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1. Basic Notation

Let g be a Kac-Moody algebra.

{ai}ier {a)}ier, the set of simple roots, coroots.
{e; € g}ie1, a choice of simple root vectors.

{si € W}ic; the set of simple reflections.

{wi}iecs the set of fundamental weights.
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2. Sequences of reduced expressions

Fix a sequence J = (..., i}, ij—1,...,i1) : ij € | of reduced
decompositions, that is w; := Si;Sij_y " Siy € W is a reduced
decomposition for all j € J.

It is convenient to write j € J as (s, k), when

s = ij, k = {iu = ijlu < j}).

Fix t € | and let V(—w;) denote the g module with lowest weight
—TWt.
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A trail K is a sequence of vectors vJ-K € V(—w;) of weight ’yjK

. . . n;

defined by (T). For all j € J,3n; € N with e’ ij = Vjﬁl
satisfying the boundary conditions

(B(7)). 7/ = —stwe, forall j < (£,1) + 1.

(B(ir)). 'YJ'K+1 = —wjwy, for all j >> 0.

The set of all (Berenstein-Zelevinsky) trails is denoted #,5%.
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Set 6F = 3(vf + /%)
Set

jed

where the {m;};c are viewed as co-ordinate functions.
Note that zX determines the trail K.
A trail K is said to trivialize at w; if ’y[fﬂ = —wiw; : Yk > j.

The unique trail K} which trivializes at (¢, 1) is called the driving
trail.
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5. The Kashiwara Crystal

The set B, is defined by giving the co-ordinate functions {m;};c,
non-negative integer values, almost all zero.
Write mj = mk, when j € J is written as (s, k) € | x NT.

Kashiwara gave B a crystal structure through the Kashiwara
functions

= mk + Z i (as)m;,¥(s, k) € I x N¥.
J>(s,k)

These functions describe how the Kashiwara operators é,-,f,- el
act on By.

In particular the Kashiwara parameters {c;};c; are defined by

b) = b),¥be B
ei(b) = max rf(b), J-
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6. The Kashiwara-Verma subcrystal B(oo)

Bj(00) is defined as the subcrystal of B, generated by the zero
vector.

Notably as a crystal it is independent of J and denoted by B(c0).

Again for all i € I, b € B(c0), the value g;(b) is just the largest
value of k € N such that é,!‘b #0.

B(o0) has a rich combinatorial structure and in particular
determines the subcrystals corresponding to all the maximal simple
integrable quotients of Verma modules (which are simple if g is
symmetrizable).
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7. The Fundamental Problems

Problem 1. Describe B;(c0) as a subset of By.

Fact: B,(oo) admits a bijection %, which in the non-symmetrizable
case in not easy to construct. It makes no sense to ask if x is linear
since it is not defined on Bj, nor obvious how it could be extended
to Bj.

Yet as a consequence B;(00) admits sets Z; : t € | of dual
Kashiwara functions by transport of structure and they define dual
Kashiwara parameters by

e;(b) = Lné;}):z(b) :be By.

One can use these dual Kashiwara parameters, if they can be
computed, to describe B;(c0).
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8. g is semisimple

After Berenstein-Zelevinsky we can take Z; = {zf : K € #,B%},
which are linear functions on Bj;.

As a consequence one can show that B(co) is a polyhedral subset
of BJ.

Nevertheless trails are not combinatorially defined and almost
impossible to compute. Thus one cannot describe this polyhedral
subset.

Problem 2. Describe .#;54 combinatorially.

Problem 3. Extend the BZ result to all g Kac-Moody.

The latter in particular needs another approach because GP and
BZ need that the choices of J form a single orbit under Coxeter

moves. Already this fails for the affinisation of A;.

Anthony Joseph Haifa Trails and S-graphs



9. Invariance Properties

The dual Kashiwara parameters are almost invariant under the
Kashiwara crystal operators.

This invariance property leads to the notion of an S-graph.

An S-graph is a finite graph & with vertices labelled by

N = {1,2,...,n}, for some n € N*, satisfying notably the S
property below.

Let V(¥) denote the set of vertices of 4.

For all k € N, let VK(%) denote the subset of V(%) of vertices
with label k.

The crucial S property is the following.

For every v € V(%) and every k € N there is a vertex v/ € VK(¥)
and an ordered path from v to v'.

S-graphs seem pretty fundamental except that they do not exist if
an ordered path refers to following arrows on edges!
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10. S-graphs

Set N={1,2,...,n—1}. An S-graph is defined relative to some
s € | and a coefficient set ¢ = {c;};cn of non-negative integers.
The edges of an S-graph are labelled by the elements of c. Then
an ordered path just means that coefficients increase along the
edges.

With this slight modification S-graphs exist!

S-graphs are required to have several additional properties.

A crucial one is evaluation, defined by
To each vertex v a function f, is assigned and these satisfy

i i
fv - fv’ = Cv,v’(rsv —rs )7

where v, v/ are adjacent vertices with labels i,, i, joined by the
edge with label ¢, .
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An S-graph is defined by a “driving function” of type s € /. This
provides s, n and coefficient set c.

To encode this data an S graph is assume to admit a unique
pointed chain {v1, va,...,v,} with v; € V/(¥) and joined to v;i1
by an edge with label ¢;.

Thus v, is a distinguished element of the vertex set and f,, is
assigned the driving function.

An S-graph is assumed connected.

An S-set is the set {f,},cv(«)-
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12. Canonical S-graphs

Even with additional conditions an S-graph given by a coefficient
set c is not uniquely determined. However there is a “canonical”
S-graph ¥(c) for each choice of c¢. ¢(c) has some remarkable
special properties.

Assume for simplicity that ¢; > 0, for all i € N. Then ¢(c) has the
structure of an n-dimensional hypercube with exactly no edges
joining vertices with the same index.

When the ¢; are pairwise distinct, the £, : v € V(¥) are pairwise
distinct.

To preserve the above property in general, ¢(c) may be contracted
by identifying adjacent vertices with the same index and the same
attached function.

The above construction replaces squares by triangles. Eventually
when all the coefficients are equal, ¢(c) degenerates to the
n-simplex.
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13. Binary Fusion

The order relation on N induced by the natural order on c is lifted to a
total order.

Then the canonical S graphs are obtained by induction on n using a
process of “binary fusion”.

On the other hand there are graphs ¢, whose vertices which are
equivalence classes of (unordered) partitions of n+ 1 with boundary
conditions and edges defined by “single block linkages". The number of
vertices of ¢, is the Catalan number C(n) = nil (2:)

¢, admits a “natural” evaluation map, that is an assignment of a
function to each vertex v of ¥,,.

The ¢(c) can be characterized as the unique subgraphs of ¢, in which
the linear order is encoded by “triads” in ¥,,.

The ¥(c) are determined by just the linear order on N. Yet the number
of distinct graph is less than (n — 1)! and indeed the Catalan number
C(n—1).

By studying the degeneration of the hypercubes described above, one
shows that the S-set obtained from c is independent of the lifting of the
order relation on c.
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14. Convexity

The S-sets obtained from the canonical graphs have some
important additional properties.

For any choice of s € I, view the successive differences

{rl — ri*1},cn as co-ordinate functions on Q". Then the S-set
Z(c) defined by ¢(c) form the extremal elements of a convex set
K(c) in Q".

The set K(c) is relatively easy to define. From it one may deduce
Z(c) and this can be a convenient way to compute the latter,
rather than going through the inductive binary fusion construction.

The very simplest case is when the {c;};cn are increasing.

In this case K(c) = (c/)jcn where the {c/};cn are increasing and
0<c <gforallieN.
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15. Parametrization of Trails

Take an element K € .%,5% which trivializes at w := w;. Write j € J as
(s,n). Set e; = e. Let f denote the image of e under a Chevalley
anti-automorphism. Together they generate the copy of s[(2) used below.
Let v, denote the vector efrv_, @ ef—1v_,  ®---®@efv_, in the
n-fold tensor product V(—a,) ® V(—a,-1) ® --- @ V(—a1) of lowest
weight s[(2) modules.

Let e_, :j > 1is a product of simple root vectors distinct from e and of
weight —a;.

Since (ad f)e_, = 0 we may write v_,,, as the s[(2) module image Vi
of v given by

Vg = ek"e,a"ek

"le g, el V_a.

We call vk a monomial expression.

This image is non-trivial on account of the Chevalley-Serre relations
which imply that (ad €)% *te, = 0.

Let Ts(a) denote the set of all such non-zero monomial expressions with
the e_, : j > 1 fixed.
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16. Adjoining a Face

Fix s € I,k € N. Then rk — rk*1 is defined to be the face function
zF<" given by the “face” FAT1.

We say that a face Fs’“rl may be adjoined to a trail K € Ji/tKZ if
K + FXt1 e B2 and ZK+FR™ = 2K 4 2R

Adjoining the face FX*1 is the operation of moving a factor of e
from its place at (s, k + 1) to (s, k).

Fk+1 can be visualized as a genuine “face” through wiring
diagrams.

It is far from obvious when adjoining a face is possible.

Problem 4. Show that .#;B% is generated by adjoining faces to
the driving trail K}.

This is closely analogous to generating the lowest weight crystal
B(—w¢) by the Kashiwara crystal operators.
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17. The Matching Condition

The possibility of adjoining a face to a trail depends crucially on a
“matching condition” which ensures that moving e to the right
through e_,, ., only changes Vi by a (non-zero) scalar.

At first sight it might seem that such a property could only hold by

a miracle. In fact it results from the boundary condition B(ii) and
an elementary property of Demazure modules, namely (x) below.

Lemma
The sl(2) module M spanned by the elements of Ts(a) is simple.
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18. The Matching Condition. The proof

Proof.
Recall that w € W has reduced decomposition w = s;;s;,_; -+ - sj;.
Set Vi (—w:) = U(n" Vo,
One has
Viv(~wt) = Cle;]Cle; ] - - Clen]vc. (%)

Thus v € M belongs to U(b™)v_y,. Moreover if v is a weight
vector then its weight must lie in —ww; 4+ Zag, by definition of
Ts(a). Yet the only weight vectors of weight Zas lying in U(n™)
are the powers of f;. Thus v = f"v_,,, for some n € N, from
which the simplicity of M follows. O

N.B. Unfortunately this says nothing about the possible vanishing
of monomial expressions.
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19. Minimal Trails

A trail K € Ts(a) is given by an n-tuple k = (k,, kn—1, ..., k1).

The minimal trail Kymin € Ts(a) is the unique minimal element
under lexicographic order on n-tuples.

Set ¢; = —aY(éé‘;‘;‘”), for all j € NT.

Lemma
¢, €N, for all i € Nt and vanishes when i > j — 1.

The proof uses the Chevalley-Serre relations.

Thus a minimal trail gives the initial data {c;},cy of an S-graph
with zKemin being the driving function.
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20. Absence of False Trails

Identify the minimal trail in T,(a) with the n-tuple I.

Problem 5. Show that T(a) identifies with the set Kz(c) of integer
points of K(c) by taking ¢/ = k() — ¢().

Problems 1 — 5 are settled if there are no “false trails”. Moreover all
trails are hereby defined purely combinatorially and fairly explicitly.
There being no false trails can be expressed as

Ts(a) C Kz(a), (1)

for all possible choices.

Our goal is to prove (*) by induction. Let T (a) the subset of Ts(a) of
trails which trivialize at wj_; and K (c) the subset of all ¢’ € Kz(c)
such that ¢/_; = 0. It is trivial that (1) implies

T, (a) € Ky (c). (1)

Theorem

(1") implies (1).

Unfortunately this is not quite the end of the story since the notion of a
false trail depends on the choice of some s € /.
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21. The Rigid Case

We give the proof of the theorem in the easy case when the ¢; are
increasing.

The first step is to compute the coefficient of vj in Py, where

b,' = k,‘ — Z,’ > 0 and b= Z(k, —E,').

Up to a positive factor it is

HH,+k1 D4 0) —1 - a0y, (2)

Jj=1i=1

where al) =3 a;, etc.

From the S-graph defined when the ¢; are increasing and hypothesis (1),
it follows that v is the only monomial presentation of the lowest weight
vector. This forces k; — ¢; > 0 and hence that the ¢/ are increasing.
Again by uniqueness of presentation one should not be able to push e
through e_,. . and so through the Chevalley-Serre relations. Thus one
must have

aj+1

aj+12€j+1+€j,Vj:1,2,...,nf2. (3)
Independently (3) is equivalent to the ¢; being increasing. Uniqueness of

presentation is why we call it the rigid case.
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22. Proof of Theorem in the Rigid Case

Lemma
The condition at) — kU) — ¢U=1) > 0, for all j € N implies that the
coefficient of v in fPv is non-zero.

Proof.
Inspect formula (2). O

Proposition

In the rigid case and under the hypothesis (1) one has
at) — k) —¢U=1) >0, for all j € N.
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23. Proof

Proof.
We first show that ) ) .
al) — k) _ -1 >, (4)

by induction on j.
It is trivial for j = 1.
Combining (3) and (4) we obtain

AU+ _ ) _ g+ > g (5)

On the other hand the factors aUt?) 41 —j — kU) — ¢U+1) occurring in (2)
decrease in i, are integer and for i = 1, this factor is non-negative by (5).
Recall that bjy1 = kjt+1 — £j+1. By uniqueness of presentation the
expression in (2) must be non-zero. thus the above factors must be
positive for all i € [1, bj;1]. Taking i = bj;1 recovers (4) with j increased
by 1. Hence the assertion.

O]
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