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1. Basic Notation

Let g be a Kac-Moody algebra.

{αi}i∈I , {α∨i }i∈I , the set of simple roots, coroots.

{ei ∈ g}i∈I , a choice of simple root vectors.

{si ∈W }i∈I the set of simple reflections.

{$i}i∈I the set of fundamental weights.
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2. Sequences of reduced expressions

Fix a sequence J = (. . . , ij , ij−1, . . . , i1) : ij ∈ I of reduced

decompositions, that is wj := sij sij−1
· · · si1 ∈W is a reduced

decomposition for all j ∈ J.

It is convenient to write j ∈ J as (s, k), when
s = ij , k = |{iu = ij |u ≤ j}|).

Fix t ∈ I and let V (−$t) denote the g module with lowest weight
−$t .
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3. Trails

A trail K is a sequence of vectors vKj ∈ V (−$t) of weight γKj

defined by (T ). For all j ∈ J, ∃nj ∈ N with e
nj
ij
vKj = vKj+1

satisfying the boundary conditions

(B(i)). γKj = −st$t , for all j ≤ (t, 1) + 1.

(B(ii)). γKj+1 = −wj$t , for all j >> 0.

The set of all (Berenstein-Zelevinsky) trails is denoted K BZ
t .
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4. Functions

Set δKj = 1
2(γKj + γKj+1).

Set
zK =

∑
j∈J

α∨ij (δKj )mj ,

where the {mj}j∈J are viewed as co-ordinate functions.

Note that zK determines the trail K .

A trail K is said to trivialize at wj if γKk+1 = −wk$t : ∀k ≥ j .

The unique trail K 1
t which trivializes at (t, 1) is called the driving

trail.
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5. The Kashiwara Crystal

The set BJ is defined by giving the co-ordinate functions {mj}j∈J
non-negative integer values, almost all zero.
Write mj = mk

s , when j ∈ J is written as (s, k) ∈ I × N+.

Kashiwara gave BJ a crystal structure through the Kashiwara
functions

rks = mk
s +

∑
j>(s,k)

α∨ij (αs)mj , ∀(s, k) ∈ I × N+.

These functions describe how the Kashiwara operators ẽi , f̃i : i ∈ I
act on BJ .

In particular the Kashiwara parameters {εi}i∈I are defined by

εi (b) = max
k∈N+

rki (b), ∀b ∈ BJ .
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6. The Kashiwara-Verma subcrystal B(∞)

BJ(∞) is defined as the subcrystal of BJ generated by the zero
vector.

Notably as a crystal it is independent of J and denoted by B(∞).

Again for all i ∈ I , b ∈ B(∞), the value εi (b) is just the largest
value of k ∈ N such that ẽki b 6= 0.

B(∞) has a rich combinatorial structure and in particular
determines the subcrystals corresponding to all the maximal simple
integrable quotients of Verma modules (which are simple if g is
symmetrizable).
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7. The Fundamental Problems

Problem 1. Describe BJ(∞) as a subset of BJ .

Fact: BJ(∞) admits a bijection ?, which in the non-symmetrizable
case in not easy to construct. It makes no sense to ask if ? is linear
since it is not defined on BJ , nor obvious how it could be extended
to BJ .

Yet as a consequence BJ(∞) admits sets Zt : t ∈ I of dual
Kashiwara functions by transport of structure and they define dual
Kashiwara parameters by

ε?t (b) = max
z∈Zt

z(b) : b ∈ BJ .

One can use these dual Kashiwara parameters, if they can be
computed, to describe BJ(∞).
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8. g is semisimple

After Berenstein-Zelevinsky we can take Zt = {zK : K ∈ K BZ
t },

which are linear functions on BJ .
As a consequence one can show that BJ(∞) is a polyhedral subset
of BJ .
Nevertheless trails are not combinatorially defined and almost
impossible to compute. Thus one cannot describe this polyhedral
subset.

Problem 2. Describe K BZ
t combinatorially.

Problem 3. Extend the BZ result to all g Kac-Moody.

The latter in particular needs another approach because GP and
BZ need that the choices of J form a single orbit under Coxeter
moves. Already this fails for the affinisation of A1.
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9. Invariance Properties

The dual Kashiwara parameters are almost invariant under the
Kashiwara crystal operators.
This invariance property leads to the notion of an S-graph.
An S-graph is a finite graph G with vertices labelled by
N̂ = {1, 2, . . . , n}, for some n ∈ N+, satisfying notably the S
property below.
Let V (G ) denote the set of vertices of G .
For all k ∈ N̂, let V k(G ) denote the subset of V (G ) of vertices
with label k .
The crucial S property is the following.
For every v ∈ V (G ) and every k ∈ N̂ there is a vertex v ′ ∈ V k(G )
and an ordered path from v to v ′.
S-graphs seem pretty fundamental except that they do not exist if
an ordered path refers to following arrows on edges!
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10. S-graphs

Set N = {1, 2, . . . , n − 1}. An S-graph is defined relative to some
s ∈ I and a coefficient set c = {ci}i∈N of non-negative integers.
The edges of an S-graph are labelled by the elements of c. Then
an ordered path just means that coefficients increase along the
edges.
With this slight modification S-graphs exist!
S-graphs are required to have several additional properties.

A crucial one is evaluation, defined by
To each vertex v a function fv is assigned and these satisfy

fv − fv ′ = cv ,v ′(r
iv
s − r

iv′
s ),

where v , v ′ are adjacent vertices with labels iv , iv ′ joined by the
edge with label cv ,v ′ .
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11. S-sets

An S-graph is defined by a “driving function” of type s ∈ I . This
provides s, n and coefficient set c.

To encode this data an S graph is assume to admit a unique
pointed chain {v1, v2, . . . , vn} with vi ∈ V i (G ) and joined to vi+1

by an edge with label ci .

Thus vn is a distinguished element of the vertex set and fvn is
assigned the driving function.

An S-graph is assumed connected.

An S-set is the set {fv}v∈V (G ).
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12. Canonical S-graphs

Even with additional conditions an S-graph given by a coefficient
set c is not uniquely determined. However there is a “canonical”
S-graph G (c) for each choice of c. G (c) has some remarkable
special properties.
Assume for simplicity that ci > 0, for all i ∈ N. Then G (c) has the
structure of an n-dimensional hypercube with exactly no edges
joining vertices with the same index.
When the ci are pairwise distinct, the fv : v ∈ V (G ) are pairwise
distinct.
To preserve the above property in general, G (c) may be contracted
by identifying adjacent vertices with the same index and the same
attached function.
The above construction replaces squares by triangles. Eventually
when all the coefficients are equal, G (c) degenerates to the
n-simplex.
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13. Binary Fusion

The order relation on N induced by the natural order on c is lifted to a
total order.
Then the canonical S graphs are obtained by induction on n using a
process of “binary fusion”.
On the other hand there are graphs Gn whose vertices which are
equivalence classes of (unordered) partitions of n + 1 with boundary
conditions and edges defined by “single block linkages”. The number of
vertices of Gn is the Catalan number C (n) = 1

n+1

(
2n
n

)
.

Gn admits a “natural” evaluation map, that is an assignment of a
function to each vertex v of Gn.
The G (c) can be characterized as the unique subgraphs of Gn in which
the linear order is encoded by “triads” in Gn.
The G (c) are determined by just the linear order on N. Yet the number
of distinct graph is less than (n − 1)! and indeed the Catalan number
C (n − 1).
By studying the degeneration of the hypercubes described above, one
shows that the S-set obtained from c is independent of the lifting of the
order relation on c.
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14. Convexity

The S-sets obtained from the canonical graphs have some
important additional properties.
For any choice of s ∈ I , view the successive differences
{r is − r i+1

s }i∈N as co-ordinate functions on Qn. Then the S-set
Z (c) defined by G (c) form the extremal elements of a convex set
K (c) in Qn.
The set K (c) is relatively easy to define. From it one may deduce
Z (c) and this can be a convenient way to compute the latter,
rather than going through the inductive binary fusion construction.

The very simplest case is when the {ci}i∈N are increasing.
In this case K (c) = (c ′i )i∈N where the {c ′i }i∈N are increasing and
0 ≤ c ′i ≤ ci , for all i ∈ N.
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15. Parametrization of Trails

Take an element K ∈ K BZ
t which trivializes at w := wj . Write j ∈ J as

(s, n). Set es = e. Let f denote the image of e under a Chevalley
anti-automorphism. Together they generate the copy of sl(2) used below.
Let vk denote the vector eknv−an ⊗ ekn−1v−an−1 ⊗ · · · ⊗ ek1v−a1 in the
n-fold tensor product V (−an)⊗ V (−an−1)⊗ · · · ⊗ V (−a1) of lowest
weight sl(2) modules.
Let e−aj : j > 1 is a product of simple root vectors distinct from e and of
weight −aj .
Since (ad f )e−aj = 0 we may write v−w$t as the sl(2) module image vk

of vk given by

vk := ekne−ane
kn−1e−an−1 · · · ek1v−a1 .

We call vk a monomial expression.
This image is non-trivial on account of the Chevalley-Serre relations
which imply that (ad e)aj+1eaj = 0.
Let Ts(a) denote the set of all such non-zero monomial expressions with
the e−aj : j > 1 fixed.
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16. Adjoining a Face

Fix s ∈ I , k ∈ N. Then rks − rk+1
s is defined to be the face function

zF
k+1
s given by the “face” F k+1

s .
We say that a face F k+1

s may be adjoined to a trail K ∈ K KZ
t if

K + F k+1
s ∈ K BZ

t and zK+F k+1
s = zK + zF

k+1
s .

Adjoining the face F k+1
s is the operation of moving a factor of e

from its place at (s, k + 1) to (s, k).
F k+1
s can be visualized as a genuine “face” through wiring

diagrams.
It is far from obvious when adjoining a face is possible.

Problem 4. Show that K BZ
t is generated by adjoining faces to

the driving trail K 1
t .

This is closely analogous to generating the lowest weight crystal
B(−$t) by the Kashiwara crystal operators.
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17. The Matching Condition

The possibility of adjoining a face to a trail depends crucially on a
“matching condition” which ensures that moving e to the right
through e−ak+1

only changes vk by a (non-zero) scalar.

At first sight it might seem that such a property could only hold by
a miracle. In fact it results from the boundary condition B(ii) and
an elementary property of Demazure modules, namely (∗) below.

Lemma
The sl(2) module M spanned by the elements of Ts(a) is simple.
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18. The Matching Condition. The proof

Proof.
Recall that w ∈W has reduced decomposition w = sij sij−1

· · · si1 .
Set Vw (−$t) := U(n−)v−w$t .
One has

Vw (−$t) = C[eij ]C[eij−1
] · · ·C[ei1 ]v−$t . (∗)

Thus v ∈ M belongs to U(b−)v−w$t . Moreover if v is a weight
vector then its weight must lie in −w$t + Zαs , by definition of
Ts(a). Yet the only weight vectors of weight Zαs lying in U(n−)
are the powers of fs . Thus v = f ns v−w$t for some n ∈ N, from
which the simplicity of M follows.

N.B. Unfortunately this says nothing about the possible vanishing
of monomial expressions.
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19. Minimal Trails

A trail K ∈ Ts(a) is given by an n-tuple k = (kn, kn−1, . . . , k1).

The minimal trail K`min ∈ Ts(a) is the unique minimal element
under lexicographic order on n-tuples.

Set ci = −α∨i (δK`min

(s,i) ), for all i ∈ N+.

Lemma
ci ∈ N, for all i ∈ N+ and vanishes when i ≥ j − 1.

The proof uses the Chevalley-Serre relations.

Thus a minimal trail gives the initial data {ci}i∈N of an S-graph
with zK`min being the driving function.
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20. Absence of False Trails

Identify the minimal trail in Ts(a) with the n-tuple l.
Problem 5. Show that Ts(a) identifies with the set KZ(c) of integer
points of K (c) by taking c ′i = k(i) − `(i).
Problems 1− 5 are settled if there are no “false trails”. Moreover all
trails are hereby defined purely combinatorially and fairly explicitly.
There being no false trails can be expressed as

Ts(a) ⊂ KZ(a), (1)

for all possible choices.
Our goal is to prove (∗) by induction. Let T−s (a) the subset of Ts(a) of
trails which trivialize at wj−1 and K−Z (c) the subset of all c′ ∈ KZ(c)
such that c ′n−1 = 0. It is trivial that (1) implies

T−s (a) ⊂ K−Z (c). (1′)

Theorem
(1′) implies (1).

Unfortunately this is not quite the end of the story since the notion of a
false trail depends on the choice of some s ∈ I .
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21. The Rigid Case

We give the proof of the theorem in the easy case when the ci are
increasing.
The first step is to compute the coefficient of vl in f bvk, where
bi := ki − `i ≥ 0 and b =

∑
(ki − `i ).

Up to a positive factor it is

r∏
j=1

bj∏
i=1

(i + k(j−1) + `(j) − 1− a(j)), (2)

where a(j) =
∑j

i=1 ai , etc.
From the S-graph defined when the ci are increasing and hypothesis (1′),
it follows that vl is the only monomial presentation of the lowest weight
vector. This forces ki − `i ≥ 0 and hence that the c ′i are increasing.
Again by uniqueness of presentation one should not be able to push e
through e−aj+1 and so through the Chevalley-Serre relations. Thus one
must have

aj+1 ≥ `j+1 + `j ,∀j = 1, 2, . . . , n − 2. (3)

Independently (3) is equivalent to the ci being increasing. Uniqueness of
presentation is why we call it the rigid case.
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22. Proof of Theorem in the Rigid Case

Lemma
The condition a(j) − k(j) − `(j−1) ≥ 0, for all j ∈ N̂ implies that the
coefficient of vl in f bvk is non-zero.

Proof.
Inspect formula (2).

Proposition

In the rigid case and under the hypothesis (1) one has
a(j) − k(j) − `(j−1) ≥ 0, for all j ∈ N̂.
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23. Proof

Proof.
We first show that

a(j) − k(j) − `(j−1) ≥ 0, (4)

by induction on j .
It is trivial for j = 1.
Combining (3) and (4) we obtain

a(j+1) − k(j) − `(j+1) ≥ 0, (5)

On the other hand the factors a(j+1) + 1− i − k(j)− `(j+1) occurring in (2)
decrease in i , are integer and for i = 1, this factor is non-negative by (5).
Recall that bj+1 = kj+1 − `j+1. By uniqueness of presentation the
expression in (2) must be non-zero. thus the above factors must be
positive for all i ∈ [1, bj+1]. Taking i = bj+1 recovers (4) with j increased
by 1. Hence the assertion.
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