Trails and S-graphs

Anthony Joseph

Haifa

July 20, 2017

1. Basic Notation

Let \mathfrak{g} be a Kac-Moody algebra.
$\left\{\alpha_{i}\right\}_{i \in I},\left\{\alpha_{i}^{\vee}\right\}_{i \in I}$, the set of simple roots, coroots.
$\left\{e_{i} \in \mathfrak{g}\right\}_{i \in I}$, a choice of simple root vectors.
$\left\{s_{i} \in W\right\}_{i \in I}$ the set of simple reflections.
$\left\{\varpi_{i}\right\}_{i \in I}$ the set of fundamental weights.

2. Sequences of reduced expressions

Fix a sequence $J=\left(\ldots, i_{j}, i_{j-1}, \ldots, i_{1}\right): i_{j} \in I$ of reduced decompositions, that is $w_{j}:=s_{i_{j}} s_{j-1} \cdots s_{i_{1}} \in W$ is a reduced decomposition for all $j \in J$.

It is convenient to write $j \in J$ as (s, k), when $\left.s=i_{j}, k=\left|\left\{i_{u}=i_{j} \mid u \leq j\right\}\right|\right)$.

Fix $t \in I$ and let $V\left(-\varpi_{t}\right)$ denote the \mathfrak{g} module with lowest weight $-\varpi_{t}$.

3. Trails

A trail K is a sequence of vectors $v_{j}^{K} \in V\left(-\varpi_{t}\right)$ of weight γ_{j}^{K} defined by (T). For all $j \in J, \exists n_{j} \in \mathbb{N}$ with $e_{i j}^{n_{j}} v_{j}^{K}=v_{j+1}^{K}$
satisfying the boundary conditions
$(B(i)) . \gamma_{j}^{K}=-s_{t} \varpi_{t}$, for all $j \leq(t, 1)+1$.
$(B(i i)) . \gamma_{j+1}^{K}=-w_{j} \varpi_{t}$, for all $j \gg 0$.
The set of all (Berenstein-Zelevinsky) trails is denoted $\mathscr{K}_{t}^{B Z}$.

4. Functions

Set $\delta_{j}^{K}=\frac{1}{2}\left(\gamma_{j}^{K}+\gamma_{j+1}^{K}\right)$.
Set

$$
z^{K}=\sum_{j \in J} \alpha_{i j}^{\vee}\left(\delta_{j}^{K}\right) m_{j},
$$

where the $\left\{m_{j}\right\}_{j \in J}$ are viewed as co-ordinate functions.
Note that z^{K} determines the trail K.
A trail K is said to trivialize at w_{j} if $\gamma_{k+1}^{K}=-w_{k} \varpi_{t}: \forall k \geq j$.
The unique trail K_{t}^{1} which trivializes at $(t, 1)$ is called the driving trail.

5. The Kashiwara Crystal

The set B_{J} is defined by giving the co-ordinate functions $\left\{m_{j}\right\}_{j \in J}$ non-negative integer values, almost all zero.
Write $m_{j}=m_{s}^{k}$, when $j \in J$ is written as $(s, k) \in I \times \mathbb{N}^{+}$.
Kashiwara gave B_{J} a crystal structure through the Kashiwara functions

$$
r_{s}^{k}=m_{s}^{k}+\sum_{j>(s, k)} \alpha_{i j}^{\vee}\left(\alpha_{s}\right) m_{j}, \forall(s, k) \in I \times \mathbb{N}^{+}
$$

These functions describe how the Kashiwara operators $\tilde{e}_{i}, \tilde{f}_{i}: i \in I$ act on B_{J}.

In particular the Kashiwara parameters $\left\{\varepsilon_{i}\right\}_{i \in I}$ are defined by

$$
\varepsilon_{i}(b)=\max _{k \in \mathbb{N}^{+}} r_{i}^{k}(b), \forall b \in B_{J}
$$

6. The Kashiwara-Verma subcrystal $B(\infty)$

$B_{J}(\infty)$ is defined as the subcrystal of B_{J} generated by the zero vector.

Notably as a crystal it is independent of J and denoted by $B(\infty)$.
Again for all $i \in I, b \in B(\infty)$, the value $\varepsilon_{i}(b)$ is just the largest value of $k \in \mathbb{N}$ such that $\tilde{e}_{i}^{k} b \neq 0$.
$B(\infty)$ has a rich combinatorial structure and in particular determines the subcrystals corresponding to all the maximal simple integrable quotients of Verma modules (which are simple if \mathfrak{g} is symmetrizable).

7. The Fundamental Problems

Problem 1. Describe $B_{J}(\infty)$ as a subset of B_{J}.

Fact: $B_{J}(\infty)$ admits a bijection \star, which in the non-symmetrizable case in not easy to construct. It makes no sense to ask if \star is linear since it is not defined on B_{J}, nor obvious how it could be extended to B_{J}.

Yet as a consequence $B_{J}(\infty)$ admits sets $Z_{t}: t \in I$ of dual Kashiwara functions by transport of structure and they define dual Kashiwara parameters by

$$
\varepsilon_{t}^{\star}(b)=\max _{z \in Z_{t}} z(b): b \in B_{J} .
$$

One can use these dual Kashiwara parameters, if they can be computed, to describe $B_{J}(\infty)$.

8. \mathfrak{g} is semisimple

After Berenstein-Zelevinsky we can take $Z_{t}=\left\{z^{K}: K \in \mathscr{K}_{t}^{B Z}\right\}$, which are linear functions on B_{J}.
As a consequence one can show that $B_{J}(\infty)$ is a polyhedral subset of B_{J}.
Nevertheless trails are not combinatorially defined and almost impossible to compute. Thus one cannot describe this polyhedral subset.

Problem 2. Describe $\mathscr{K}_{t}^{B Z}$ combinatorially.
Problem 3. Extend the BZ result to all \mathfrak{g} Kac-Moody.

The latter in particular needs another approach because GP and $B Z$ need that the choices of J form a single orbit under Coxeter moves. Already this fails for the affinisation of A_{1}.

9. Invariance Properties

The dual Kashiwara parameters are almost invariant under the Kashiwara crystal operators.
This invariance property leads to the notion of an S-graph.
An S-graph is a finite graph \mathscr{G} with vertices labelled by
$\hat{N}=\{1,2, \ldots, n\}$, for some $n \in \mathbb{N}^{+}$, satisfying notably the S
property below.
Let $V(\mathscr{G})$ denote the set of vertices of \mathscr{G}.
For all $k \in \hat{N}$, let $V^{k}(\mathscr{G})$ denote the subset of $V(\mathscr{G})$ of vertices with label k.
The crucial S property is the following.
For every $v \in V(\mathscr{G})$ and every $k \in \hat{N}$ there is a vertex $v^{\prime} \in V^{k}(\mathscr{G})$ and an ordered path from v to v^{\prime}.
S-graphs seem pretty fundamental except that they do not exist if an ordered path refers to following arrows on edges!

10. S-graphs

Set $N=\{1,2, \ldots, n-1\}$. An S-graph is defined relative to some $s \in I$ and a coefficient set $\mathbf{c}=\left\{c_{i}\right\}_{i \in N}$ of non-negative integers. The edges of an S-graph are labelled by the elements of \mathbf{c}. Then an ordered path just means that coefficients increase along the edges.
With this slight modification S-graphs exist!
S-graphs are required to have several additional properties.
A crucial one is evaluation, defined by
To each vertex v a function f_{v} is assigned and these satisfy

$$
f_{v}-f_{v^{\prime}}=c_{v, v^{\prime}}\left(r_{s}^{i_{v}}-r_{s}^{i_{\nu^{\prime}}}\right)
$$

where v, v^{\prime} are adjacent vertices with labels $i_{v}, i_{v^{\prime}}$ joined by the edge with label $c_{v, v^{\prime}}$.

11. S-sets

An S-graph is defined by a "driving function" of type $s \in I$. This provides s, n and coefficient set \mathbf{c}.

To encode this data an S graph is assume to admit a unique pointed chain $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ with $v_{i} \in V^{i}(\mathscr{G})$ and joined to v_{i+1} by an edge with label c_{i}.

Thus v_{n} is a distinguished element of the vertex set and $f_{v_{n}}$ is assigned the driving function.

An S-graph is assumed connected.
An S-set is the set $\left\{f_{v}\right\}_{v \in V(\mathscr{G})}$.

12. Canonical S-graphs

Even with additional conditions an S-graph given by a coefficient set \mathbf{c} is not uniquely determined. However there is a "canonical" S-graph $\mathscr{G}(\mathbf{c})$ for each choice of $\mathbf{c} . \mathscr{G}(\mathbf{c})$ has some remarkable special properties.
Assume for simplicity that $c_{i}>0$, for all $i \in N$. Then $\mathscr{G}(\mathbf{c})$ has the structure of an n-dimensional hypercube with exactly no edges joining vertices with the same index.
When the c_{i} are pairwise distinct, the $f_{v}: v \in V(\mathscr{G})$ are pairwise distinct.
To preserve the above property in general, $\mathscr{G}(\mathbf{c})$ may be contracted by identifying adjacent vertices with the same index and the same attached function.
The above construction replaces squares by triangles. Eventually when all the coefficients are equal, $\mathscr{G}(\mathbf{c})$ degenerates to the n-simplex.

13. Binary Fusion

The order relation on N induced by the natural order on \mathbf{c} is lifted to a total order.
Then the canonical S graphs are obtained by induction on n using a process of "binary fusion".
On the other hand there are graphs \mathscr{G}_{n} whose vertices which are equivalence classes of (unordered) partitions of $n+1$ with boundary conditions and edges defined by "single block linkages". The number of vertices of \mathscr{G}_{n} is the Catalan number $C(n)=\frac{1}{n+1}\binom{2 n}{n}$.
\mathscr{G}_{n} admits a "natural" evaluation map, that is an assignment of a function to each vertex v of \mathscr{G}_{n}.
The $\mathscr{G}(\mathbf{c})$ can be characterized as the unique subgraphs of \mathscr{G}_{n} in which the linear order is encoded by "triads" in \mathscr{G}_{n}.
The $\mathscr{G}(\mathbf{c})$ are determined by just the linear order on N. Yet the number of distinct graph is less than $(n-1)$! and indeed the Catalan number $C(n-1)$.
By studying the degeneration of the hypercubes described above, one shows that the S-set obtained from \mathbf{c} is independent of the lifting of the order relation on \mathbf{c}.

14. Convexity

The S-sets obtained from the canonical graphs have some important additional properties.
For any choice of $s \in I$, view the successive differences
$\left\{r_{s}^{i}-r_{s}^{i+1}\right\}_{i \in N}$ as co-ordinate functions on \mathbb{Q}^{n}. Then the S-set
$Z(\mathbf{c})$ defined by $\mathscr{G}(\mathbf{c})$ form the extremal elements of a convex set
$K(\mathbf{c})$ in \mathbb{Q}^{n}.
The set $K(\mathbf{c})$ is relatively easy to define. From it one may deduce $Z(\mathbf{c})$ and this can be a convenient way to compute the latter, rather than going through the inductive binary fusion construction.

The very simplest case is when the $\left\{c_{i}\right\}_{i \in N}$ are increasing. In this case $K(\mathbf{c})=\left(c_{i}^{\prime}\right)_{i \in N}$ where the $\left\{c_{i}^{\prime}\right\}_{i \in N}$ are increasing and $0 \leq c_{i}^{\prime} \leq c_{i}$, for all $i \in N$.

15. Parametrization of Trails

Take an element $K \in \mathscr{K}_{t}^{B Z}$ which trivializes at $w:=w_{j}$. Write $j \in J$ as (s, n). Set $e_{s}=e$. Let f denote the image of e under a Chevalley anti-automorphism. Together they generate the copy of $\mathfrak{s l}(2)$ used below. Let v_{k} denote the vector $e^{k_{n}} v_{-a_{n}} \otimes e^{k_{n-1}} v_{-a_{n-1}} \otimes \cdots \otimes e^{k_{1}} v_{-a_{1}}$ in the n-fold tensor product $V\left(-a_{n}\right) \otimes V\left(-a_{n-1}\right) \otimes \cdots \otimes V\left(-a_{1}\right)$ of lowest weight $\mathfrak{s l}(2)$ modules.
Let $e_{-a_{j}}: j>1$ is a product of simple root vectors distinct from e and of weight $-a_{j}$.
Since $(\operatorname{ad} f) e_{-a_{j}}=0$ we may write $v_{-w \sigma_{t}}$ as the $\mathfrak{s l}(2)$ module image $\bar{v}_{\mathbf{k}}$ of v_{k} given by

$$
\bar{v}_{\mathbf{k}}:=e^{k_{n}} e_{-a_{n}} e^{k_{n-1}} e_{-a_{n-1}} \cdots e^{k_{1}} v_{-a_{1}}
$$

We call $\bar{v}_{\mathbf{k}}$ a monomial expression.
This image is non-trivial on account of the Chevalley-Serre relations which imply that $(\operatorname{ad} e)^{a_{j}+1} e_{a_{j}}=0$.
Let $T_{s}(\mathbf{a})$ denote the set of all such non-zero monomial expressions with the $e_{-a_{j}}: j>1$ fixed.

16. Adjoining a Face

Fix $s \in I, k \in \mathbb{N}$. Then $r_{s}^{k}-r_{s}^{k+1}$ is defined to be the face function $z^{F_{s}^{k+1}}$ given by the "face" F_{s}^{k+1}.
We say that a face F_{s}^{k+1} may be adjoined to a trail $K \in \mathscr{K}_{t}^{K Z}$ if $K+F_{s}^{k+1} \in \mathscr{K}_{t}^{B Z}$ and $z^{K+F_{s}^{k+1}}=z^{K}+z_{s}^{F_{s}^{k+1}}$.
Adjoining the face F_{s}^{k+1} is the operation of moving a factor of e from its place at $(s, k+1)$ to (s, k).
F_{s}^{k+1} can be visualized as a genuine "face" through wiring diagrams.
It is far from obvious when adjoining a face is possible.
Problem 4. Show that $\mathscr{K}_{t}^{B Z}$ is generated by adjoining faces to the driving trail K_{t}^{1}.

This is closely analogous to generating the lowest weight crystal $B\left(-\varpi_{t}\right)$ by the Kashiwara crystal operators.

17. The Matching Condition

The possibility of adjoining a face to a trail depends crucially on a "matching condition" which ensures that moving e to the right through $e_{-a_{k+1}}$ only changes $\bar{v}_{\mathbf{k}}$ by a (non-zero) scalar.

At first sight it might seem that such a property could only hold by a miracle. In fact it results from the boundary condition $B(i i)$ and an elementary property of Demazure modules, namely ($*$) below.

Lemma

The $\mathfrak{s l}(2)$ module M spanned by the elements of $T_{s}(\mathbf{a})$ is simple.

18. The Matching Condition. The proof

Proof.

Recall that $w \in W$ has reduced decomposition $w=s_{i_{j}} s_{j_{j-1}} \cdots s_{i_{1}}$.
Set $V_{w}\left(-\varpi_{t}\right):=U\left(\mathfrak{n}^{-}\right) v_{-w \varpi_{t}}$.
One has

$$
\begin{equation*}
V_{w}\left(-\varpi_{t}\right)=\mathbb{C}\left[e_{i_{j}}\right] \mathbb{C}\left[e_{i_{j-1}}\right] \cdots \mathbb{C}\left[e_{i_{1}}\right] v_{-\varpi_{t}} . \tag{*}
\end{equation*}
$$

Thus $v \in M$ belongs to $U\left(\mathfrak{b}^{-}\right) v_{-w \varpi_{t}}$. Moreover if v is a weight vector then its weight must lie in $-w \varpi_{t}+\mathbb{Z} \alpha_{s}$, by definition of $T_{s}(\mathbf{a})$. Yet the only weight vectors of weight $\mathbb{Z} \alpha_{s}$ lying in $U\left(\mathfrak{n}^{-}\right)$ are the powers of f_{s}. Thus $v=f_{s}^{n} v_{-w \omega_{t}}$ for some $n \in \mathbb{N}$, from which the simplicity of M follows.
N.B. Unfortunately this says nothing about the possible vanishing of monomial expressions.

19. Minimal Trails

A trail $K \in T_{s}(\mathbf{a})$ is given by an n-tuple $\mathbf{k}=\left(k_{n}, k_{n-1}, \ldots, k_{1}\right)$.
The minimal trail $K_{\ell \text { min }} \in T_{s}(\mathbf{a})$ is the unique minimal element under lexicographic order on n-tuples.

Set $c_{i}=-\alpha_{i}^{\vee}\left(\delta_{(s, i)}^{K_{\ell \text { min }}}\right)$, for all $i \in \mathbb{N}^{+}$.

Lemma

$c_{i} \in \mathbb{N}$, for all $i \in \mathbb{N}^{+}$and vanishes when $i \geq j-1$.

The proof uses the Chevalley-Serre relations.
Thus a minimal trail gives the initial data $\left\{c_{i}\right\}_{i \in N}$ of an S-graph with $z^{K_{\ell \text { min }}}$ being the driving function.

20. Absence of False Trails

Identify the minimal trail in $T_{s}(\mathbf{a})$ with the n-tuple \mathbf{I}.
Problem 5. Show that $T_{s}(\mathbf{a})$ identifies with the set $K_{\mathbb{Z}}(\mathbf{c})$ of integer points of $K(\mathbf{c})$ by taking $c_{i}^{\prime}=k^{(i)}-\ell^{(i)}$.
Problems $1-5$ are settled if there are no "false trails". Moreover all trails are hereby defined purely combinatorially and fairly explicitly.
There being no false trails can be expressed as

$$
\begin{equation*}
T_{s}(\mathbf{a}) \subset K_{\mathbb{Z}}(\mathbf{a}) \tag{1}
\end{equation*}
$$

for all possible choices.
Our goal is to prove $(*)$ by induction. Let $T_{s}^{-}(\mathbf{a})$ the subset of $T_{s}(\mathbf{a})$ of trails which trivialize at w_{j-1} and $K_{\mathbb{Z}}^{-}(\mathbf{c})$ the subset of all $\mathbf{c}^{\prime} \in K_{\mathbb{Z}}(\mathbf{c})$ such that $c_{n-1}^{\prime}=0$. It is trivial that (1) implies

$$
T_{s}^{-}(\mathbf{a}) \subset K_{\mathbb{Z}}^{-}(\mathbf{c})
$$

Theorem
(1^{\prime}) implies (1).
Unfortunately this is not quite the end of the story since the notion of a false trail depends on the choice of some $s \in I$.

21. The Rigid Case

We give the proof of the theorem in the easy case when the c_{i} are increasing.
The first step is to compute the coefficient of $v_{\mathbf{1}}$ in $f^{b} v_{\mathbf{k}}$, where $b_{i}:=k_{i}-\ell_{i} \geq 0$ and $b=\sum\left(k_{i}-\ell_{i}\right)$.
Up to a positive factor it is

$$
\begin{equation*}
\prod_{j=1}^{r} \prod_{i=1}^{b_{j}}\left(i+k^{(j-1)}+\ell^{(j)}-1-a^{(j)}\right) \tag{2}
\end{equation*}
$$

where $a^{(j)}=\sum_{i=1}^{j} a_{i}$, etc.
From the S-graph defined when the c_{i} are increasing and hypothesis (1^{\prime}), it follows that v_{1} is the only monomial presentation of the lowest weight vector. This forces $k_{i}-\ell_{i} \geq 0$ and hence that the c_{i}^{\prime} are increasing. Again by uniqueness of presentation one should not be able to push e through $e_{-a_{j+1}}$ and so through the Chevalley-Serre relations. Thus one must have

$$
\begin{equation*}
a_{j+1} \geq \ell_{j+1}+\ell_{j}, \forall j=1,2, \ldots, n-2 \tag{3}
\end{equation*}
$$

Independently (3) is equivalent to the c_{i} being increasing. Uniqueness of presentation is why we call it the rigid case.

22. Proof of Theorem in the Rigid Case

Lemma

The condition $a^{(j)}-k^{(j)}-\ell^{(j-1)} \geq 0$, for all $j \in \hat{N}$ implies that the coefficient of $v_{\mathbf{l}}$ in $f^{b} v_{\mathbf{k}}$ is non-zero.

Proof.
Inspect formula (2).

Proposition

In the rigid case and under the hypothesis (1) one has $a^{(j)}-k^{(j)}-\ell^{(j-1)} \geq 0$, for all $j \in \hat{N}$.

23. Proof

Proof.

We first show that

$$
\begin{equation*}
a^{(j)}-k^{(j)}-\ell^{(j-1)} \geq 0, \tag{4}
\end{equation*}
$$

by induction on j.
It is trivial for $j=1$.
Combining (3) and (4) we obtain

$$
\begin{equation*}
a^{(j+1)}-k^{(j)}-\ell^{(j+1)} \geq 0, \tag{5}
\end{equation*}
$$

On the other hand the factors $a^{(j+1)}+1-i-k^{(j)}-\ell^{(j+1)}$ occurring in (2) decrease in i, are integer and for $i=1$, this factor is non-negative by (5). Recall that $b_{j+1}=k_{j+1}-\ell_{j+1}$. By uniqueness of presentation the expression in (2) must be non-zero. thus the above factors must be positive for all $i \in\left[1, b_{j+1}\right]$. Taking $i=b_{j+1}$ recovers (4) with j increased by 1 . Hence the assertion.

