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1. Introduction

• A finite W -algebra is a certain associative algebra attached to a pair (g, e) where g is a
complex semi-simple Lie algebra and e ∈ g is a nilpotent element.

• A finite W -algebra is a generalization of the universal
enveloping algebra U(g). For e = 0 it coincides with U(g).

• Finite W -algebra is a quantization of the Poisson algebra of functions on the Slodowy (i.e.
transversal) slice at e to the orbit Ad(G)e, where g = Lie(G).

• Due to recent results of I. Losev, A. Premet and others,
finite W -algebras play a very important role in description of primitive ideals.

• Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet.

• FiniteW -algebras for Lie algebras and superalgebras have been studied by mathematicians
and physicists: L. Fehér, C. Briot, E. Ragoucy, P. Sorba, A. Premet, I. Losev, V. Ginzburg,
W. L. Gan, J. Brundan, A. Kleshchev, J. Brown, S. Goodwin, W. Wang, L. Zhao, Y. Zeng,
B. Shu, Y. Peng.
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2. Finite W -algebras for Lie superalgebras

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra with reductive even part g0̄.

Let χ ∈ g∗0̄ ⊂ g∗ be an even nilpotent element in the coadjoint representation, i.e. the
closure of the G0̄-orbit of χ in g∗0̄ contains zero. (G0̄ is the algebraic reductive group of g0̄.)

Definition. The annihilator of χ in g is

gχ = {x ∈ g | χ([x, g]) = 0}.

Definition. A good Z-grading for χ is a Z-grading
g = ⊕j∈Zgj satisfying the following two conditions:

(1) χ(gj) = 0 if j 6= −2,

(2) gχ belongs to
⊕

j≥0 gj.
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• χ([·, ·]) defines a non-degenerate skew-symmetric even bilinear form on g−1.

Let l be a maximal isotropic subspace with respect to this form.

m := (⊕j≤−2gj)
⊕

l is a nilpotent subalgebra of g.

The restriction of χ to m,

χ : m −→ C
defines a one-dimensional representation Cχ =< v > of m.

Let Iχ be the left ideal of U(g) generated by a− χ(a) for all a ∈ m.

Definition. The induced g-module

Qχ := U(g)⊗U(m) Cχ
∼= U(g)/Iχ

is called the generalized Whittaker module.
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Definition. The finite W -algebra associated to the nilpotent element χ is

Wχ := EndU(g)(Qχ)op.

• As in the Lie algebra case, the superalgebras Wχ are all isomorphic for different choices
of good Z-gradings and maximal isotropic subspaces l.

• By Frobenius reciprocity

EndU(g)(Qχ) = HomU(m)(Cχ, Qχ).

That defines an identification of Wχ with the subspace

Qm
χ = {u ∈ Qχ | au = χ(a)u for all a ∈ m}.



6

• Let π : U(g)→ U(g)/Iχ be the natural projection. Then

Wχ = {π(y) ∈ U(g)/Iχ | (a− χ(a))y ∈ Iχ for all a ∈ m},

Equivalently,
Wχ = {π(y) ∈ U(g)/Iχ | ad(a)y ∈ Iχ for all a ∈ m}.

The algebra structure on Wχ is given by

π(y1)π(y2) = π(y1y2)

for yi ∈ U(g) such that ad(a)yi ∈ Iχ for all a ∈ m and i = 1, 2.
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• The case of an even good Z-grading is easier!

Definition. A Z-grading g = ⊕j∈ggj is called even, if gj = 0 unless j is an even integer.

Let p := ⊕j≥0gj be a parabolic subalgebra of g. Then

Wχ = U(p)m := {y ∈ U(p) | [a, y] ∈ Iχ for all a ∈ m}.
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Remark. If g admits an even non-degenerate g-invariant supersymmetric bilinear form,
then g ' g∗ and χ(x) = (e|x) for some nilpotent e ∈ g0̄ (i.e. ade is a nilpotent endomor-
phism of g).

e can be included in sl(2) =< e, h, f >⊂ g0̄ by the Jacobson-Morozov theorem.

adh defines a Dynkin Z-grading g = ⊕j∈Zgj, which is good for χ.

• Good Z-grading for basic Lie superalgebras were classified by C. Hoyt
(Israel J. Math. 2012).

Example. Let e = 0. Then χ = 0, g0 = g,m = 0,

Qχ = U(g), Wχ = U(g).
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Let ge = Ker(ade). Then ge = gχ, dim ge = dim g0 + dim g1.

Definition. A nilpotent χ ∈ g∗0̄ is called regular nilpotent if G0̄-orbit of χ has maximal
dimension, i.e. the dimension of gχ

0̄
is minimal.

Equivalently, a nilpotent e ∈ g0̄ is regular nilpotent, if the centralizer ge0̄ attains the minimal
dimension, which is equal to rankg0̄.

Example. g = sl(n).

e ∈ sl(n) is nilpotent if and only if e is an n× n-matrix with eigenvalues zero.

e is a regular nilpotent ⇐⇒ its Jordan normal form contains a single Jordan block

e =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 · · · 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
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Theorem. (B. Kostant, Invent. Math. 1978)
For a reductive Lie algebra g and a regular nilpotent element e ∈ g, the finite W -algebra
Wχ is isomorphic to the center of U(g).

• This theorem does not hold for Lie superalgebras, since Wχ must have a non-trivial odd
part, and the center of U(g) is even.
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Definition. Kazhdan filtration on Wχ.

Define the Z-grading on T (g) induced by the shift by 2 of the fixed good Z-grading.

For X ∈ gj set

degX = j + 2.

This induces a filtration on U(g), and therefore on U(g)/Iχ and on Wχ ⊂ U(g)/Iχ.

Theorem. (A. Premet, Adv. Math. 2002)

Let g be a semi-simple Lie algebra. Then

the associated graded algebra Gr(Wχ) is isomorphic to S(gχ);

the center of Wχ coincides with the center of U(g).
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3. Premet’s theorem for Lie superalgebras

• Let l be a Lagrangian subspace in g−1, and let l′ be some subspace in g−1 satisfying

the following two properties:

(1) g−1 = l⊕ l′

(2) l′ contains a maximal isotropic subspace with respect to the form χ([·, ·]) on g−1.

If dim(g−1)1̄ is even, then l′ is a maximal isotropic subspace.

If dim(g−1)1̄ is odd, then l⊥ ∩ l′ is one-dimensional and we fix (an odd)

θ ∈ l⊥ ∩ l′ such that χ([θ, θ]) = 2. Then π(θ) ∈ Wχ.
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Conjecture.

Assume that g is a Lie superalgebra with reductive even part g0̄.

If dim(g−1)1̄ is even, then GrKWχ ' S(gχ)

If dim(g−1)1̄ is odd, then GrKWχ ' S(gχ)⊗ C[ξ],

where C[ξ] is the exterior algebra generated by one element ξ.

• Y. Zheng and B. Shu proved the PBW theorem for finite W -algebras for basic Lie super-
algebras over C of any type except D(2, 1;α), where α 6∈ Q̄ (J. Algebra, 2015).
They considered two cases depending on the parity of dim(g−1)1̄.
As a Corollary they proved this Conjecture.

• We proved that if χ is regular nilpotent, and

g = D(2, 1;α), then GrKWχ ' S(gχ)⊗ C[ξ].

(E.P., J. Math. Phys. 2016).
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4. Finite W-algebra for gl(m|n)

• E. Ragoucy and P. Sorba first observed that in the case when g is the general linear
Lie algebra and e consists of n Jordan blocks each of size l, the finite W -algebra for g is
isomorphic to the truncated Yangian of level l associated to gl(n), which is a certain quotient
of the Yangian Yn for gl(n).
(Comm. Math. Phys. 1999).

• J. Brundan and A. Kleshchev generalized this result to an arbitrary nilpotent e, and
obtained a realization of the finite W -algebra for the general linear Lie algebra as a quotient
of a so-called shifted Yangian.
(Adv. Math. 2006).
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• J. Brown, J. Brundan and S. Goodwin proved that the finite W -algebra for g = gl(m|n)

associated to regular (principal) nilpotent element is a certain truncation of a shifted

version of the super-Yangian Y (gl(1|1)).

They also proved that all irreducible modules over this algebra are finite-dimensional and

classified them by highest weight theory (Algebra Number Theory, 2013).
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5. The super-Yangian of gl(1|1)

gl(1|1) = {A =

(
a b
c d

)
| a, b, c, d ∈ C} [A,B] = AB − (−1)p(A)p(B)BA

Definition. The super-Yangian Y1|1 = Y (gl(1|1)) is an associative unital superalgebra

over C with a countable set of generators

T
(r)
i,j where i, j = 1, 2, and r ≥ 0.

The Z2-grading of Y1|1 is defined by

p(T
(r)
i,j ) = p(i) + p(j).

We employ the formal series:

Ti,j(u) =
∑
r≥0

T
(r)
i,j u

−r ∈ Y1|1[[u−1]].

• Relations in Y1|1:

(u− v)[Ti,j(u), Tk,l(v)] =

(−1)p(i)p(k)+p(i)p(l)+p(k)p(l)((Tk,j(u)Ti,l(v)− Tk,j(v)Ti,l(u)).
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• The evaluation homomorphism ev : Y1|1 → U(gl(1|1)) is defined by

ev(T
(r)
i,j ) =

{
(−1)p(i)ei,j if r = 1,

0 if r > 1

• Y1|1 is a Hopf algebra with comultiplication given by

∆(T
(r)
i,j ) =

r∑
s=0

∑
k

T
(s)
i,k ⊗ T

(r−s)
k,j .
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• Gauss factorization:

T (u) :=

(
T1,1(u) T1,2(u)
T2,1(u) T2,2(u)

)
= F (u)D(u)E(u)

D(u) =

(
d1(u) 0

0 d2(u)

)
, E(u) =

(
1 e(u)
0 1

)
, F (u) =

(
1 0

f (u) 1

)
di(u) =

∑
r≥0

d
(r)
i u

−r, e(u) =
∑
r≥1

e(r)u−r, f (u) =
∑
r≥1

f (r)u−r

• Drinfeld generators: Y1|1 is generated by even elements d
(r)
1 , d

(r)
2

for r > 0, and odd elements e(r), f (r) for r > 0.
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6. Shifted super-Yangian Y1|1(σ)

Let

σ =

(
0 s1,2

s2,1 0

)
, where s1,2, s2,1 ≥ 0 are integers

Definition. Y1|1(σ) is a subalgebra of Y1|1 generated by d
(r)
1 , d

(r)
2 for r > 0,

e(r) for r > s1,2 and f (r) for r > s2,1.

• If σ =

(
0 0
0 0

)
, then Y1|1(σ) = Y1|1.
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7. Principal W -algebra W (π)

g = gl(l|k) is a general linear Lie superalgebra, (x|y) = str(xy).

Assume that l ≥ k.

Definition. π is a two-rowed pyramid:

k is the number of boxes in the 1-st row,

l is the number of boxes in the 2-nd row.

Each row is a connected horizontal strip.

Definition. The shift matrix for π is

σ =

(
0 s1,2

s2,1 0

)
, where π has

s2,1 columns of hight one on its left side and

s1,2 columns of hight one on its right side,

or if k = 0 and l = s2,1 + s1,2.

• l = s2,1 + k + s1,2.
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Example.

g = gl(5|2), π = σ =

(
0 1
2 0

)

g = gl(2|2), π = σ =

(
0 0
0 0

)
• Pyramid π defines Z-grading on g:

g = ⊕r∈Zg(r) deg(ei,j) := col(j)− col(i), h := g(0)

• The explicit principal (regular) nilpotent element e is

e :=
∑
i,j

ei,j ∈ g0̄

summing over all adjacent pairs (i, j) of boxes in π.

Example. g = gl(5|2), e = e1,2 + e2,3 + e3,4 + e4,5 + e6,7
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Remark. e ∈ g(1). We double the degree to agree with the previous definition.

• χ(x) := (x|e). This is a good Z-grading for χ.

The finite W -algebra W (π) associated to the pyramid π is defined as usual.

Remark. In the case when g = gl(l|l), gχ is isomorphic to the truncated Lie superalgebra
of polynomial currents in gl(1|1):

gχ ∼= gl(1|1)⊗ C[t]/(tl)
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Theorem. (Brown-Brundan-Goodwin, 2013)

Assume that e is a principal (regular) nilpotent element.

Special Case: g = gl(l|l), σ =

(
0 0
0 0

)
. Then

W (π) ∼= Y l
1|1,

that is the image of Y1|1 under the homomorphism

ev⊗l ◦∆l : Y1|1 −→ [U(gl(1|1))]⊗l,

where
∆l : Y1|1 −→ Y ⊗l1|1 ,

∆l := ∆l−1,l ◦ · · · ◦∆2,3 ◦∆

is a homomorphism of associative algebras.
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The General Case: g = gl(l|k).

W (π) ∼= Y l
1|1(σ) ⊂ U(gl1)⊗s2,1 ⊗ U(gl(1|1))⊗k ⊗ U(gl1)⊗s1,2 ∼= U(h)

where U(gl1) := C[e1,1], l = s2,1 + k + s1,2.

Y l
1|1(σ) ∼= Y1|1(σ)/I l(σ),

where I l(σ) is the two-sided ideal generated by d
(r)
1 for r > k.
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Theorem. (Y. Peng, J. Algebra, 2015)
Peng described the finite W -algebra for g = gl(M |N) associated to a nilpotent e in the
case when

the Jordan type of e satisfies the following condition:

e = eM ⊕ eN ,

where eM is principal nilpotent in gl(M |0) and

the sizes of the Jordan blocks of eN are all greater or equal to M .

Signed pyramids: M is the number of boxes with +

N is the number of boxes with −

π =

The top row of π is the only row assigned with +



26

Example.

g = gl(2|7), π = l = 4, σ =

 0 1 1
0 0 0
1 1 0


Peng proved that W (π) ∼= Y l

1|n(σ), where n + 1 is the hight of the pyramid π,

l is the length of the bottom row, and σ is the shift matrix.

Theorem. (Y. Peng, Lett. Math. Phys., 2014)

Let e ∈ gl(ml|nl) be a nilpotent element, whose Jordan blocks are all of size l.

Then the associated finite W -algebra is isomorphic to Y l
m|n = Ym|n/I

l, where

I l is the 2-sided ideal of Ym|n generated by the elements {T (r)
i,j |1 ≤ i, j ≤ m + n, r > l}.

Y l
m|n is identified with the image of Ym|n under the map

ev⊗l ◦∆l : Ym|n −→ [U(gl(m|n))]⊗l.
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8. The queer Lie superalgebra g = Q(n)

Q(n) = {
(
A B
B A

)
| A,B are n× n matrices}

• Supercommutator: [X, Y ] = XY − (−1)p(X)p(Y )Y X.

ei,j and fi,j are standard bases in A and B respectively:

ei,j =

(
Eij 0
0 Eij

)
, fi,j =

(
0 Eij

Eij 0

)
z =

∑n
i=1 ei,i is a central element
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• Q(n) admits an odd non-degenerate g-invariant super-symmetric bilinear form

(x|y) := otr(xy) for x, y ∈ g,

otr

(
A B
B A

)
= trB

SQ(n) := {X ∈ Q(n) | otrX = 0}.

Q̃(n) := SQ(n)/ < z > is simple for n ≥ 3.
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9. Finite W -algebra for Q(n)

Let g = Q(n). Let sl(2) =< e, h, f >, where

e =

n
l∑

p=1

l−1∑
i=1

el(p−1)+i,l(p−1)+i+1,

f =

n
l∑

p=1

l−1∑
i=1

i(l − i)el(p−1)+i+1,l(p−1)+i,

h =

n
l∑

p=1

l∑
i=1

(l − 2i + 1)el(p−1)+i,l(p−1)+i.

Thus e is an even nilpotent element in Q(n).

• Note that e is a nilpotent n× n-matrix, whose Jordan blocks are all of size l.

# Jordan blocks is n
l .



30

Example

e ∈ Q(8), n = 8, l = 4,
n

l
= 2

e =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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• We replace e =
∑n

l
p=1

∑l−1
i=1 el(p−1)+i,l(p−1)+i+1 (even)

by

E =
∑n

l
p=1

∑l−1
i=1 fl(p−1)+i,l(p−1)+i+1 (odd).
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Example

e ∈ Q(8) (even)

e =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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e ∈ Q(8) (even) −→ E ∈ Q(8) (odd)

E =



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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There is an isomorphism g∗ ' Π(g), where Π is the change of parity.

• Define an even nilpotent χ ∈ g∗ by

χ(x) := (x|E) for all x ∈ g

Let
gE := {x ∈ g | [x,E] = 0}

be the centralizer of E in g. Then

gχ = gE =<

l−k∑
i=1

el(p−1)+i,l(q−1)+i+k |
l−k∑
i=1

(−1)i+k−1fl(p−1)+i,l(q−1)+i+k >,

where 1 ≤ p, q ≤ n
l , k = 0, 1, . . . , l − 1.

dim(gE) = (
n2

l
|n

2

l
).

• χ is regular nilpotent ⇐⇒ dim(gχ) = (n|n) ⇐⇒ # Jordan blocks in e is one:
l = n, nl = 1.
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Example. g = Q(3), l = 3, dim(gχ) = (3|3)

gχ is spanned by

even :


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 ,


0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 ,

odd :


0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0

 ,


0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 ,


0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
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• adh defines an even Z-grading of g:

g =

2l−2⊕
j=2−2l

gj,

gj = {x ∈ g | adh(x) = jx},

gj = {0} for odd j.

• This Z-grading is called Dynkin, and it is good for χ.

dim(gχ) = dim g0.
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Example

g = Q(8) : n = 8, l = 4,
n

l
= 2

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2
−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2
−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2
−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
−4 −2 0 2 −4 −2 0 2 −4 −2 0 2 −4 −2 0 2
−6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0 −6 −4 −2 0
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Let

m :=

l−1⊕
j=1

g−2j.

The left ideal Iχ and Wχ are defined now as usual.

Let

p :=

l−1⊕
j=0

g2j

be a parabolic subalgebra of g and p = g0 ⊕ n, where

n :=

l−1⊕
j=1

g2j.



39

Since the Z-grading is even, the algebra Wχ can be regarded as a subalgebra of U(p).
Let

U(p)+ := ⊕i>0U(p)2i.

It is a two sided ideal in U(p) and U(p)/U(p)+ ∼= U(g0).

• Let ϑ : U(p) −→ U(g0) be the natural projection.

Theorem. The restriction to Wχ is the Harish-Chandra homomorphism

ϑ : Wχ −→ U(g0),

which is injective.
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10. Generators of Wχ for Q(n)

• A. Sergeev recursively defined the elements e
(m)
i,j and f

(m)
i,j of U(Q(n)):

e
(m)
i,j =

n∑
k=1

ei,ke
(m−1)
k,j + (−1)m+1

n∑
k=1

fi,kf
(m−1)
k,j ,

f
(m)
i,j =

n∑
k=1

ei,kf
(m−1)
k,j + (−1)m+1

n∑
k=1

fi,ke
(m−1)
k,j ,

where e
(0)
i,j = δi,j and f

(0)
i,j = 0. (Lett. Math. Phys. 1983)

Theorem. π(e
(l+k)
lp,l(q−1)+1) and π(f

(l+k)
lp,l(q−1)+1) for p, q = 1, . . . , nl and k = 0, . . . , l − 1

generate Wχ.

Idea of Proof. Let P (X) be the highest weight component of GrK(X). Then

P
(
π(e

(l+k)
lp,l(q−1)+1)

)
=

l−k∑
i=1

el(p−1)+i,l(q−1)+i+k,

P
(
π(f

(l+k)
lp,l(q−1)+1)

)
=

l−k∑
i=1

(−1)i+k−1fl(p−1)+i,l(q−1)+i+k,

and these elements form a homogeneous basis of gχ.

dim(gχ) = (n
2

l |
n2

l ).
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Corollary.

GrKWχ ' S(gχ)

Hence Conjecture is true in this case.



42

11. Super-Yangian of Q(n)

Super-Yangian Y (Q(n)) was introduced by M. Nazarov. (Lecture Notes in Math. 1992)

• Y (Q(n)) is the associative unital superalgebra over C with the countable set of generators

T
(m)
i,j where m = 1, 2, . . . and i, j = ±1,±2, . . . ,±n.

• The Z2-grading of the algebra Y (Q(n)) is defined as follows:

p(T
(m)
i,j ) = p(i) + p(j)

where p(i) = 0 if i > 0 and p(i) = 1 if i < 0.

• To write down defining relations for these generators we employ the formal series in
Y (Q(n))[[u−1]]:

Ti,j(u) = δi,j · 1 + T
(1)
i,j u

−1 + T
(2)
i,j u

−2 + . . . .

(u2 − v2)[Ti,j(u), Tk,l(v)] · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) (1)

= (u + v)(Tk,j(u)Ti,l(v)− Tk,j(v)Ti,l(u))

− (u− v)(T−k,j(u)T−i,l(v)− Tk,−j(v)Ti,−l(u)) · (−1)p(k)+p(l)

Ti,j(−u) = T−i,−j(u) (2)



43

• Y (Q(n)) is a Hopf superalgebra with comultiplication given by

∆(T
(r)
i,j ) =

r∑
s=0

∑
k

(−1)(p(i)+p(k))(p(j)+p(k))T
(s)
i,k ⊗ T

(r−s)
k,j .

• The opposite comultiplication is given by

∆op(T
(r)
i,j ) =

r∑
s=0

∑
k

T
(r−s)
k,j ⊗ T (s)

i,k .

Combine the series for Ti,j(u) into the single element

T (u) =
∑
i,j

Ei,j ⊗ Ti,j(u)

of the algebra End(Cn|n)⊗ Y (Q(n))[[u−1]].
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The element T (u) is invertible and we put

T (u)−1 =
∑
i,j

Ei,j ⊗ T̃i,j(u).

• The assignment Ti,j(u) 7→ T̃i,j(u) defines the antipodal map

S : Y (Q(n)) −→ Y (Q(n)),

which is an anti-automorphism of the Z2-graded algebra Y (Q(n)).

Definition. An anti-homomorphism ϕ : A → B of associative Lie superalgebras is a
linear map, which preserves the Z2-grading and satisfies for any homogeneous X, Y ∈ A

ϕ(XY ) = (−1)p(X)p(Y )ϕ(Y )ϕ(X).
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Let
∆op
l : Y (Q(n)) −→ Y (Q(n))⊗l

where

∆op
l := ∆op

l−1,l ◦ · · · ◦∆op
2,3 ◦∆op

• There exists a homomorphism U : Y (Q(n))→ U(Q(n)) defined as follows

T
(r)
i,j 7→ (−1)re

(r)
j,i , if i > 0, j > 0, r > 0,

T
(r)
i,j 7→ (−1)rf

(r)
j,−i, if i < 0, j > 0, r > 0, T

(0)
i,j 7→ δi,j.

This follows from the results of M. Nazarov and A. Sergeev.

Main Theorem (2017). Let e be an even nilpotent element in Q(n) whose Jordan
blocks are each of size l. Then the finite W -algebra for Q(n) is isomorphic to the image of
Y (Q(nl )) under the homomorphism

U⊗l ◦∆op
l : Y (Q(

n

l
)) −→ (U(Q(

n

l
)))⊗l.

We proved this theorem in the regular case, i.e. l = n in Adv. Math. 300 (2016).
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Idea of proof.

• There exists a surjective homomorphism:

ϕ : Y (Q(
n

l
)) −→ Wχ

defined as follows:

ϕ(T (r)
q,p ) = (−1)rπ(e

(l+r−1)
lp,l(q−1)+1), ϕ(T

(r)
−q,p) = (−1)rπ(f

(l+r−1)
lp,l(q−1)+1)

for r = 1, 2, . . .

In fact, the Harish-Chandra homomorphism

ϑ : Wχ −→ U(g0),

is injective. We have

U(g0) ∼= U(Q(
n

l
))⊗l

Then
ϕ = ϑ−1 ◦ U⊗l ◦∆op

l

Hence
Wχ
∼= U⊗l ◦∆op

l (Y (Q(
n

l
)))

�
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Let
∆l : Y (Q(n)) −→ Y (Q(n))⊗l,

where
∆l := ∆l−1,l ◦ · · · ◦∆2,3 ◦∆.

Definition. The evaluation homomorphism

ev : Y (Q(n))→ U(Q(n))

is defined as follows

T
(1)
i,j 7→ −ej,i, T

(1)
−i,j 7→ −fj,i for i, j > 0, T

(0)
i,j 7→ δi,j

T
(r)
i,j 7→ 0 for r > 1.

Theorem.
Wχ
∼= ev⊗l ◦∆l(Y (Q(

n

l
)))

Idea of proof. Consider an anti-homomorphism

ēv : Y (Q(n))→ U(Q(n)),

defined by ēv := α ◦ ev,
where α is the principal anti-automorphism of the enveloping superalgebra U(g)

α : X 7→ −X for all X ∈ g
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1) (U⊗l ◦∆op
l )(Y (Q(nl ))) = (ēv⊗l ◦∆l)(Y (Q(nl ))).

Lemma.
(ēv ◦ S)(T

(r)
±q,p) = U(T

(r)
±q,p).

This implies that

(ēv⊗l ◦ S⊗l ◦∆op
l )(T

(r)
±q,p) = (U⊗l ◦∆op

l )(T
(r)
±q,p).

Finally, the following diagram, where Y := Y (Q(nl )) is commutative:

Y
∆−→ Y ⊗ Y id◦∆−−→ Y ⊗ Y ⊗ Y id◦id◦∆−−−−→ . . .

S

x S⊗S
x S⊗S⊗S

x S⊗4

x
Y

∆op

−−→ Y ⊗ Y ∆op◦id−−−→ Y ⊗ Y ⊗ Y ∆op◦id◦id−−−−−→ . . .

Hence

(ēv⊗l ◦∆l ◦ S)(T
(r)
±q,p) = (U⊗l ◦∆op

l )(T
(r)
±q,p).
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2) (ēv⊗l ◦∆l)(Y (Q(nl ))) = (ev⊗l ◦∆l)(Y (Q(nl )))

follows from

ēv⊗l ◦∆l(T
(r)
±q,p) = (−1)rev⊗l ◦∆l(T

(r)
±q,p).

�

Conjecture.

Wχ
∼= Y (Q(

n

l
))/I l,

where I l is the 2-sided ideal of Y (Q(nl )) generated by the elements

{T (r)
±q,p | 1 ≤ q, p ≤ n

l
, r > l}

Problem: Describe the finite W -algebra for Q(n) associated to an arbitrary nilpotent
element.
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12. Wχ when χ is regular nilpotent

Theorem. (Adv. Math. 2016)
If g = Q(n) and χ is regular nilpotent, then

(1) the center of Wχ coincides with the center of U(Q(n)).

(2) there exist n even and n odd generators in Wχ, such that all even generators commute
and generate the polynomial subalgebra of rank n in Wχ, and the commutators of odd
generators lie in the center of Wχ.

The proof is based on the surjective homomorphism:

ϕ : Y (Q(1)) −→ Wχ,

and the following relation in Y (Q(1)): if r + s is even, then

[T
(r)
1,1 , T

(s)
1,1 ] = 0.

Conjecture. Let g be a basic Lie superalgebra and χ be regular nilpotent.

Then it is possible to find a set of generators of Wχ such that even generators commute,

and the commutators of odd generators are in the center of U(g).

• Brown, Brundan and Goodwin proved this Conjecture for g = gl(m|n).
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13. Representations of Wχ when χ is regular nilpotent

Theorem. (Adv. Math. 2016)
Let g = Q(n) and χ be regular nilpotent. Let M be a simple Wχ-module. Then

dimM ≤ 2k+1, where k =

{
n
2 if n is even,

n−1
2 if n is odd.

The proof is based on the Amitsur–Levitzki theorem.

Theorem. (A.–L.) If A1, . . . , A2n are n× n matrices, then∑
σ∈S2n

sgn(σ)Aσ(1) . . . Aσ(2n) = 0.

Idea of Proof. The Harish-Chandra homomorphism

ϑ : Wχ −→ U(h)

is injective, where

h := g0 =< ei,i | fi,i >, [fi,i, fi,i] = 2ei,i
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(1) U(h) satisfies A.–L. identity, i.e. for any u1, . . . , u2k+1 ∈ U(h)∑
σ∈S

2k+1

sgn(σ)uσ(1) . . . uσ(2k+1) = 0. (∗)

(2) Wχ satisfies A.–L. identity, since Wχ
∼= ϑ(Wχ) ⊂ U(h).

(3) Consider M as a module over the associative algebra Wχ, forgetting the Z2-grading.

Then either M is simple or M is a direct sum of two non-homogeneous simple submodules

M1 ⊕M2.

(a) In the former case dimM ≤ 2k.

Assume dimM > 2k. Let V be a subspace of dimension 2k + 1. By density theorem for

any X1, . . . , X2k+1 ∈ EndC(V ) one can find u1, . . . , u2k+1 in Wχ such that (ui)|V = Xi for

all i = 1, . . . , 2k+1. Since EndC(V ) does not satisfy (*) we obtain a contradiction.

(b) In the latter case, we can prove in the same way that dimM1 ≤ 2k and dimM2 ≤ 2k.
Therefore dimM ≤ 2k+1.
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14. Defect

Definition. Let g be a basic Lie superalgebra, and let 4 be the set of roots with respect

to a maximal torus in g0̄. Then the defect of g is the dimension of a maximal isotropic

subspace in the R-span of 4.

Example.

def(sl(m|n)) = min(m,n),

def(osp(2m|2n)) = def(osp(2m + 1|2n)) = min(m,n).

The exceptional Lie superalgebras

D(2, 1;α), G(3), F (4)

have defect one.
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Theorem. (Adv. Math. 2016)

For a basic Lie superalgebra g, if χ is regular nilpotent, then all irreducible representations

of Wχ are finite-dimensional:

dimM ≤ 2k+1

k = d or k = d + 1, where d is the defect of g:

• k = d, if g is of type I: g = sl(m|n), osp(2|2n),

or g is of type II and dim(gχ
1̄
) is even: g = osp(2m + 1|2n) for m ≥ n,

osp(2m|2n) for m ≤ n, G3.

• k = d + 1, if g is of type II and dim(gχ
1̄
) is odd:

g = osp(2m + 1|2n) for m < n, osp(2m|2n) for m > n, D(2, 1;α), F4.
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Idea of Proof.

(1) If g is of Type I, then it admits an even good Z-grading for a regular χ.

Then there is an injective homomorphism

ϑ : Wχ −→ U(g0).

(2) If g is of Type II, then it admits no even good Z-grading for a regular χ.

One can construct an injective homomorphism

ϑ : Wχ −→ W̄ s
χ,

where W̄ s
χ is “the finite W -algebra” of s:

s is the Levi subalgebra of a parabolic subalgebra p, such that n− ⊂ m ⊂ p−, where n− is

the nilradical of the opposite parabolic p−.

W̄ s
χ = (U(s)⊗U(ms) Cχ)m

s
, where ms = m ∩ s, χ is the restriction of χ on s.

(3) If χ is regular, then U(g0) (correspondingly, W̄ s
χ) satisfies the Amitsur–Levitzki identity.

Hence Wχ satisfies the Amitsur–Levitzki identity.

Problem: Classify the finite-dimensional irreducible representations of finite W -algebras.
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