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The Basics of Manifold Topology
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Poincaré

While there were antecedents in the work of Guass, Riemann, Betti,
Cauchy, and others, Poincaré’s work from 1892 through 1905 in a series of
7 articles, Analysis Situs and its complements, established Topology as an
independent sub-discipline within mathematics.
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Poincaré’s Approach

(i) To define the notion of higher dimensional manifolds,

(ii) to give various ways of presenting these manifolds,

(iii) to find algebraic invariants of manifolds,

(iv) study the properties of those invariants,

(v) to use the invariants to distinguish manifolds that are topologically
distinct, and

(vi) eventually to use the invariants to classify all manifolds.

We will see how this program continues to inspire work in topology today
and also how näıve Poincaré’s vision was.
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The Plan of the Lectures

My goal in these lectures is to show you some of the (fairly) recent
developments in low dimensional topology, i.e., the topology of manifolds
of dimensions 3 and 4 and how both geometry and physics influence our
understanding of these manifolds. But to set the stage and to ‘warm up’ I
will begin with a review of the classical, and well-kinown, theory of
surfaces. After that I will review the topological classification of simply
connected 4-manifolds and Donsaldson’s smooth invariants. Next, we will
discuss the Jones polynomial and Khovanov homology of knots in 3-space
and approaches to these invariants using ideas from physics. We will finish
with a discussion of 3-dimensional maniifolds – culminating with
Perelman’s proof of the Geometrization for 3-manifolds.
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PART I. TOPOLOGY OF SURFACES
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Definition of Surfaces

Poincaré certainly had in mind the case of surfaces, well-understood by the
time he did his foundational work in topology.

A surface is a (Hausdorff) topological space Σ with the property that
every point x ∈ Σ has a neighborhood U homeomorphic to the open unit
ball B2 in the plane.

Given a homeomorphism ϕ : U → B2 we pull back the usual coordinates
(x , y) on B2 to functions, still called x and y , on U. These are local
coordinates on Σ defined near x , and U together with its local coordinates
is called coordinate patch. So a surface is a (Hausdorff) topological space
with the property that it can be covered by local coordinate patches.
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Examples of surfaces
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Local Coordinates

We can cover Σ with local coordinate patches {Ua}a∈A with local
coordiantes (xa, ya). On the overlap Ua ∩ Ub, the functions xb and yb are
continuous functions of (xa, ya), meaning that the overlap transition is a
homeomorphism from an open subset of Ua to an open subset of Ub but
in general nothing more can be said.

One can impose more structure on the surface by requiring that we can
cover the surface by a set of coordinate patches so that the overlaps are
restricted in various ways. Examples are C k -structures, C∞-structures,
real analytic structures, complex analytic structures, algebraic structures,
and many others others.
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Morse Functions on (smooth) Surfaces

It turns out that, for surfaces, it is no restriction to suppose that the
surface in question has a C∞-structure (called a smooth structure). We
shall now make this assumption, which allows us to use calculus on
surfaces.

Let us consider a compact (smooth) surface. For simplicity let us suppose
that it is smoothly embedded in a Euclidean space. Then choosing a
generic direction to be ’height’, the height function will have only isolated
critical points and at each the Hessian of second derivatives of the
function will be non degenerate:
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Morse Functions on (smooth) Surfaces

There are 3 possible types of critical points:
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Combinatorial Picture of a surface

Restricting attention to connected surfaces, if there is more than one local
minimum, then there is a bridge between two of them passing over a single
critical point of index 1.

We can then ‘push’ the bridge down canceling the critical point one index
one against one of the local minima.
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Combinatorial Picture of a surface

Inductively, we can assume the height function has only one local
minimum, and dually, only one local maximum. This leads to a picture of
the surface as a disk with a certain number of ‘bands’ attached so that the
boundary of the resulting surface is a single circle. Then a second disk is
attached along that surface forming the compact surface.
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Examples of Surfaces
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Homology and Cohomology

Like any topological space, a surface has homology groups and
cohomology groups. A Morse function can be used to produce a chain
complex that computes these groups. One of the main properties of the
homology and cohomology of a surface, indeed of any compact manifold, is
that they satisfy Poincaré duality. In terms of a Morse function this duality
is realized by turning the function over; i.e. replacing it by its negative.
This sends a critical point of index k to a critical point of index n − k.
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Interestingly the classification of compact surfaces agrees with the
classification of finite dimension Z/2Z-vector spaces V with
non-degenerate symmetric pairings to Z/2Z. The identification associates
to a surface Σ the vector space H1(Σ;Z/2Z) and the pairing is

a⊗ b 7→ 〈a ∪ b, [Σ]〉,

or equivalently to two homology classes it associates their homological
intersection. Such a pairing is isomorphic to a diagonal pairing with 1s
down the diagonal or to a direct sum of(

1 0
0 1

)
.

The corresponding surfaces are a connected sum or real projective planes
or a multi-holed torus. In the latter case the number of holes is called the
genus.
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PAT II. RIEMANNIAN GEOMETRY OF SURFACES

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 17 / 106



Riemannian metrics on surfaces

A Riemannian metric on a surface is a smoothly varying family of positive
inner products on the tangent spaces. In local coordinates (x1, x2) we
express the metric as

gij(x
1, x2)dx i ⊗ dx j ,

where gij(x
1, x2) is a symmetric matrix of smooth functions that is

positive definite at each point. Indeed,

gij = 〈 ∂
∂x i

,
∂

∂x j
〉

is the inner product of the coordinate partial derivatives.

Every smooth surface, indeed every smooth manifold, has a Riemannian
metric. Simply use a partition of unity to piece together standard
Euclidean metrics on coordinate patches. Clearly, a surface has lots of
Riemannian metrics, in fact an infinite dimensional space of them.
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2nd order approximation to a surface in 3-space: Curvature

Consider a surface Σ in 3-space. We can restrict the ambient Euclidean
metric to define a Riemannian metric on Σ. Let p ∈ Σ. Translate and
rotate the Euclidean coordinates of the ambient space so that locally near
p ∈ Σ the surface is given as the graph of a function z = f (x , y) with p
being the point (0, 0, f (0, 0)) and with ∇f (0, 0) = 0. Then the tangent
plane to Σ at p is the plane {z = 0} and to second order the surface is
given by

z(x , y) = f (0, 0) + (x , y)

(
∂xx f (0, 0) ∂xy f (0, 0)
∂yx f (0, 0) ∂yy f (0, 0)

)(
x
y

)
.
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2nd order approximation to a surface: Curvature

Rotating the x , y -coordinates allows us to assume that the matrix of
partial derivatives of f at (0, 0) is diagonal – the new coordinate directions
are called the directions of principle curvature, and the values of
−∂xx f (0, 0) and −∂yy f (0, 0) are called the principle curvatures at p.

The product of the principle curvatures is called the Gauss curvature and
is denoted K . It is of course the determinant of the matrix of second
partials of f at (0, 0):

K = det

(
∂xx f (0, 0) ∂xy f (0, 0)
∂xy f (0, 0) ∂yy f (0, 0)

)
.
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Gauss Curvature

The principle curvatures depend on the way the surface sits in 3-space but
the Gauss curvature only depends on the Riemannian metric on the
surface induced by the embedding in space, not the embedding itself.
In fact, we have

K (p) = limr 7→0
πr2 −Area(B(p, r))

πr4/12
,

where B(p,r) is the metric ball centered at p of radius r .
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Gauss Curvature

That is to say the Gauss curvature measures the area defect (positive
curvature) or area excess (negative curvature) of small balls centered at
the point compared to the ball of the same radius in the plane.

Indeed the area formula for the Gauss curvature of a surface in 3-space
tells us how to generalize to any surface with a Riemannian metric – use
the same area formula to define the Gauss curvature.

K (p) = limr 7→0
πr2 −Area(B(p, r))

πr4/12
.
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Gauss-Bonnet Theorem

There is a beautiful connection between the curvature and the topology of
a surface:

Theorem

(Gauss-Bonnet Theorem) Let Σ be a compact surface and g a Riemannian
metric on Σ with Kg its curvature. Then∫

Σ
Kgdvol = 2πχ(Σ),

where χ(Σ) is the Euler characteristic of Σ.

Recall that
χ(Σ) = rkH0(Σ)− rkH1(Σ) + rkH2(Σ).
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Complex structures on surfaces

Let Σ be an oriented surface. A Riemannian metric determines a positive
definite inner product on the tangent space at every point and hence an
identification of the tangent space at every point with C, up to rotation.
[SO(2) = U(1)]. This determines a decomposition of the complexification
of the cotangent space

T ∗Σ⊗R C = T 1,0Σ⊕ T 0,1Σ,

where T 1,0 is the space of complex linear maps and T 0,1 is the space of
complex anti-linear maps.
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Complex structures on surfaces

This determines a decomposition of the differential d , which maps
complex-valued functions on Σ to complex valued one-forms, as
d = ∂ + ∂̄. It is a theorem that ∂̄ determines a complex structure on Σ.
Namely, near every point p there is a function z to the complex numbers
with ∂̄z = 0 and with ∂z(p) 6= 0. Such local functions determine local
complex coordinates and make Σ a complex curve.
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Universal Covering of a surface

Having imposed a complex structure on Σ let us consider the universal
covering Σ̃. It is a simply connected complex surface and has a
Riemannian metric invariant under all complex automorphisms. Up to a
constant rescaling, there are only three possibilities:

S2: the round metric

C: the Euclidean metric dx2 + dy2,

the upper half-plane H: the Poincaré metric dx2+dy2

y2 .

There is another model for the 3rd example, namely the interior of the unit
disk with the metric

4(dx2 + dy2)

(1− r2)2
.

This is also called the Poincaré metric.
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Universal Covering of a surface

Since the group of complex automorphisms acts by isometries and acts
transitively, it follows that these metrics are of constant curvature: 1, 0,
and −1 respectively. Consequently,

Theorem

Any compact Riemann surface admits a metric of constant curvature
−1, 0, or 1. If the surface is compact, the curvature of this constant
curvature metric has the same sign as the Euler characteristic and the
volume of the surface is 2π times the absolute value of the Euler
characteristic.
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Three types of surfaces

Round: S2 and RP2.
Flat: T 2 and the Klein bottle
Negative or hyperbolic: all orientable surfaces of g > 1 and all connected
sums of at least 3 projective planes.
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Space of Flat Metrics on T 2: The Modular curve

Any complex structure on the torus is the quotient of C by a lattice. For
the moment, fix a basis for the lattice. Modulo scaling and rotations we
can assume that the lattice is generated by {1, τ} for some τ ∈ H.
Changing the basis of the lattice produces an action of SL(2,Z) (by linear
fractional transformations) and the space of tori is identified with
H/SL(2,Z). This is an interesting and much studied complex space, but
we will not say more about it.
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Space of hyperbolic metrics on a surface of genus g > 1

Let Σ be an orientable Riemann surface of genus g > 1 with a hyperbolic
metric. Fix a system of n = 3g − 3 disjointly embedded loops
{A1, . . . ,An} that divide the surface up into pairs of pants. We can make
the Ai geodesic loops. Then we have the Fenchel-Nielsen coordinates for
this metric: `1, . . . , `n are the lengths of the geodesics homotopic to
A1, . . . ,An and r1, . . . , rn are rotation parameters along these loops.
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Space of hyperbolic metrics on a surface of genus g > 1

This identifies the space of marked hyperbolic surfaces of genus g with
R6g−6. Again the group of homotopy classes of surface automorphisms
(called the mapping class group) acts on this space with finite stabilizers
and the quotient is the moduli space of hyperbolic surfaces of genus g , or
equivalently complex curves of genus g , another much studied space.
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PART III: TOPOLOGY OF 4-MANIFOLDS
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No Classification is Possible

There can be no classification of compact 4-manifolds of the Poincaré
envisioned. The reason is that every finitely presented group occurs as the
fundamental group of a compact 4-manifold, and it is a classical result
that finitely presented groups cannot be classified.

For this reason, and for reasons of keeping life as simple as possible, we
concentrate on simply connected 4-manifolds
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Smooth versus topological

4 is the first dimension where there is a difference between smooth
manifolds and topological manifolds. On the topological side there is a
very good classification, at least for simply connected 4-manifolds.

Let us begin with the homotopy classification. The only homological
invariant of such a manifold M is H2(M;Z), which is a free abelian group.
Choosing an orientation on M determines a symmetric pairing

H2(M;Z)⊗ H2(M;Z)→ Z,

given by
a⊗ b 7→ 〈a ∪ b, [M]〉,

or if you prefer one can consider the homological intersection on dual
group H2(M;Z). The isomorphism class of this pairing determines M up
to homotopy equivalence.
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Poincaré duality tells us that these pairings are unimodular. Thus, we can
find a basis for H2(M;Z)⊗ R = H2(M;R) in which the matrix for the
intersection form is diagonal. We denote by b±2 (M) the number of positive
and negative entries on the diagonal. The index of M is the signature of
this pairing, i.e., b+

2 (M)− b−2 (M).
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Freedman’s classification

Theorem

(Freedman) Every symmetric, unimodular pairing occurs as the pairing of
a compact, simply connected topological 4-manifold. If the pairing is even
then the realizing simply connected manifold is unique up to
homeomorphism. If the pairing is odd, then there are exactly two
homeomorphism classes of simply connected, topological manifolds
realizing the pairing and one of them is stably smooth in the sense that its
product with R has a smooth structure.

As a corollary we have the 4-dimensional version of the Poincaré
Conjecture.

Corollary

(Freedman) A compact, simply connected 4-manifold with the homology
of S4 is homeomorphic to the 4-sphere.
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Smooth 4-manifolds

In contrast to this result, Donaldson first proved:

Theorem

(Donaldson) A definite even form is not the intersection form of any
simply connected smooth manifold.

He went on to show:

Theorem

(Donaldson) There are non-diffeomorphic compact 4-manifolds that are
homeomorphic.

In fact, using the same techniques one can show:

Theorem

There are infinitely many pairwise non-diffeomorphic 4-manifolds all of
which are homeomorphic,
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Principal G -bundles

All of these smooth theorems rely on understanding properties of the
moduli space of solutions to the Anti-Self Dual equations for connections
on principal SU(2)-bundles over the 4-manifold.
Recall for any group Lie group G , a principal G -bundle over a smooth
manifold M is a smooth manifold P together with a smooth submersion
π : P → M and a smooth free action P × G → P with the property that π
factors to give a smooth identification of the quotient space P/G with M.
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Connections on Principal G -bundles

Definition

A connection on a principal G -bundle P → M is a G -invariant, smoothly
varying family of ‘horizontal’ subspaces Hp ⊂ Pp.

Horizontal means complementary to the tangent space to the fiber, or
equivalently, mapping via dπ isomorphically onto TMπ(p).
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Connections on Principal G -bundles
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Connections on Principal G -bundles

There are two ways to view a connection. One is parallel translation.

A connection A allows us to define parallel translation along paths in the
base. Suppose that γ : [0, 1]→ M is a smooth path from x to y . We
define parallel translation

Pγ : π−1(x)→ π−1(y)

as follows. For any p ∈ π−1(x) there is a unique path γ̃p that

(i) projects onto γ,

(ii) begins at p, and

(iii) has horizontal tangent vector at each point.

We define Pγ(p) = γ̃p(1). This is a G -equivariant diffeomorphism from
π−1(x) to π−1(y).
N.B. In general, parallel translation from π−1(x) to π−1(y) depends on
the path γ connecting x and y .
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define parallel translation

Pγ : π−1(x)→ π−1(y)

as follows. For any p ∈ π−1(x) there is a unique path γ̃p that

(i) projects onto γ,

(ii) begins at p, and

(iii) has horizontal tangent vector at each point.

We define Pγ(p) = γ̃p(1). This is a G -equivariant diffeomorphism from
π−1(x) to π−1(y).
N.B. In general, parallel translation from π−1(x) to π−1(y) depends on
the path γ connecting x and y .
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Covariant Derivative

Parallel translation in the principal bundle determines parallel translation in
any associated vector bundle V = P ×G V , where V is a (finite
dimensional) linear representation of G . Namely, a curve in the total space
of V is parallel if it is of the form [γ(t), v ] for a parallel path γ(t) in P and
a fixed vector v ∈ V . Parallel translation in a vector bundle allows us to
define the covariant derivative

∇ : Ω0(M;V)→ Ω1(M;V)

as follows. Given a local section σ of V defined near x ∈ M and given a
tangent vector τ ∈ TMx we express σ as [p̃, ṽ ] where p̃ is a local section
of P → M horizontal in the τ -direction and ṽ is a local function M → V ,
and then we define

∇(σ)(τ) = [p̃(x),
∂ṽ(x)

∂τ
].

ad
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The Connection 1-form

The other way to view a connection is as a one-form on the principal
bundle.

A connection A allows us to define a linear map ωA : TP → Tf P, where
Tf P means the subbundle tangent to the fibers of the projection to M.
Furthermore, using the G action, we can identify Tf P with the Lie algebra
g of G . Thus, we have ωA : TP → g. The G -invariance of the connection
translates into an equivariance equation:

ωA(τg) = g−1ωA(τ)g .

The form ωA does not descend to a one-form on M because it is
non-trivial along the fibers. But since any two connection forms agree in
the vertical direction, their difference vanishes on the fibers and satisfies
the equivariance equation above. This means that the difference of two
connections is a one-form on the base, M, with values in adP.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 43 / 106



The Connection 1-form

The other way to view a connection is as a one-form on the principal
bundle.
A connection A allows us to define a linear map ωA : TP → Tf P, where
Tf P means the subbundle tangent to the fibers of the projection to M.
Furthermore, using the G action, we can identify Tf P with the Lie algebra
g of G . Thus, we have ωA : TP → g. The G -invariance of the connection
translates into an equivariance equation:

ωA(τg) = g−1ωA(τ)g .

The form ωA does not descend to a one-form on M because it is
non-trivial along the fibers. But since any two connection forms agree in
the vertical direction, their difference vanishes on the fibers and satisfies
the equivariance equation above. This means that the difference of two
connections is a one-form on the base, M, with values in adP.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 43 / 106



The Curvature of a Connection

We define the curvature of the connection as

FA = dωA +
1

2
[ωA, ωA].

This is a 2-form on P satisfying the equivariance property above. The
Jacobi identity for G implies that this 2-form descends to a two-form on
M with values in ad(P). It is the curvature 2-form.
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The Curvature of a Connection

The curvature is the obstruction to the vanishing of ∇2 in the following
sense. As we have defined it

∇ : Ω0(M; adP)→ Ω1(M; adP).

This extends by the Leibnitz rule to

∇ : Ωi (M; adP)→ Ωi+1(M; adP),

by
∇(ω ⊗ σ) = dω ⊗ σ + (−1)deg(ω)ω ∧∇(σ).

Then
∇2 : Ω0(M; adP)→ Ω2(M; adP)

turns out to be linear over the functions, and hence is multiplication by a
2-form with values in adP. That two form is the curvature 2-form.
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Integrability

The vanishing of ∇2 means that for any pair of vector fields X and Y near
p ∈ M, we have

∇X ◦ ∇Y −∇Y ◦ ∇X −∇[X ,Y ] = 0.

This is exactly the integrability connection on the horizontal distribution.
The connection is integrable if and only if its curvature vanishes, if and
only if locally there is a trivialization of the principal bundle P → M in
which the connection is the one induced by the product structure.

For integral connections since ∇2 = 0 we get a complex of differential
forms Ω∗(M; adP) with differential ∇ and we can then define the
cohomology H∗(M; adP), analogous to the deRham cohomology (which is
the case when P is the trivial bundle with structure group R∗.)
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The ASD equations

Let M be a compact, connected, oriented Riemannian 4-manifold, and let
P → M be a principal SU(2)-bundle. We consider the Yang-Mills energy
of the connection given by

1

4π2

∫
M
|FA|2dvol .

In dimension 4, the Hodge ∗ operator on 2-forms squares to the identity
and hence its eigenspaces determine a decomposition Λ2T ∗M as
Λ+(M)⊕ Λ−(M) and hence a decomposition of 2-forms as self-dual plus
anti-self dual. These subspaces are orthogonal under the L2-inner product.
Hence, ∫

M
|FA|2dvol =

∫
M

(|F+
A |

2 + |F−A |
2)dvol .
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On the other hand, the Chern class c2(P) of the bundle is given by

1

8π2

∫
M
tr(FA ∧ FA) =

1

4π2

∫
M

(|F−A |
2 − |F+

A |
2)dvol .

[The normalized positive definite inner product on su(2) is
A⊗ B 7→ −2tr(AB).] If

∫
M c2(P) is positive then the absolute minima of

the energy function occurs when F+
A = 0, i.e., when the curvature is

anti-self dual.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 48 / 106



The moduli space of ASD connections

We suppose that c2(P) > 0. Then the absolute minima are the ASD
connections, namely {A

∣∣F+
A = 0}. The space of ASD connections on P is

acted on by the automorphisms of the bundle P. For a generic metric on
M the quotient space, the space of gauge equivalence classes of ASD
connections which is denoted M(P), is smooth away from reducible
connections and

dimM(P) = 8
(∫

M
c2(P)

)
− 3(1 + b+

2 (M)).

If b+
2 (M) > 0 then (for a generic metric) there are no reducible

connections. For b+
2 (M) > 1, for a generic path of metrics there are no

reducible connections.
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The case b+
2 = 0 and c2(P) = 1

Consider now the case when M is a simply connected manifold with
b+

2 (M) = 0 and c2(P) = 1. Then the moduli space M(P) is 5
dimensional. Gauge equivalence classes of reducible connections are in
natural one-to-one correspondence with the set of pairs of cohomology
classes {±x} ∈ H2(M;Z) with x2 = −1. Each reducible connection is a
singular point of the moduli space whose neighborhood is homeomorphic
to the cone of CP2. The moduli space is non-compact and a
neighborhood of infinity in M(P) is diffeomorphic to M × [0,∞). The
ASD connections in this neighborhood are almost flat over almost all of M
and have a ‘bubble’ of charge 1 concentrated near a point.
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The moduli space of ASD connections
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Removing small neighborhoods around each reducible connection and
adding a copy of M at infinity extracts from M(P) a compact oriented 5
manifold whose boundary is M together with one copy of CP2 for each pair
{±x} with x2 = −1. It follows that the index of M must be the sum of
integers ±1, one for each pair {±x} with x2 = −1. This can happen only
if the form is diagonalizable over the integers with −1s down the diagonal.

Corollary

(Donaldson) If a positive definite unimodular form is the intersection form
of a compact, smooth, simply connected 4-manifold then the form is
diagonalizable over the integers. In particular, no even positive definite
form is the intersection form of such a manifold.
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The results about non-uniqueness of smooth structures on certain
topological 4-manifolds are proved in a similar way. One considers moduli
spaces M(P) of gauge equivalence classes of ASD connections of bundles
P of higher Chern class. These moduli spaces are compactified to M(P)
by adding idealized connections at infinity which record the limiting
‘background connection’ and how bubbling takes place. There is a natural
map from H2(M)→ H2(M) and hence a map from the polynomial
algebra generated by H2(M) to the cohomology ring of M. Integrating
over the fundamental class of M produces a homogeneous polynomial
function on H2(M) whose degree is one-half the dimension of the moduli
space, and hence which depends on the Chern class of P. These are the
Donaldson polynomial invariants, which are well-defined independent of
the metric if b+

2 (M) > 1. These invariants are used to distinguish
non-diffeomorphic manifolds that are homeomorphic.
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One computation

A K3 surface is a smooth quartic hypersurface in CP3. The Donaldson
polynomials of the K3 surface are given by

D2n =
Qn

2n
,

where Q is the quadratic intersection form on H2.

Equivalently, the Donaldson power series is D = exp(Q/2).

Producing a new, homeomorphic surfaces by doing log transforms along
one or two fibers produces a surface with Donaldson invariants which are
polynomials in Q and multiplies of the exceptional fibers, which then are
different from the Donaldson polynomial of the K3. These give examples
of homeomorphic, non-diffeomorphic surfaces.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 54 / 106



One computation

A K3 surface is a smooth quartic hypersurface in CP3. The Donaldson
polynomials of the K3 surface are given by

D2n =
Qn

2n
,

where Q is the quadratic intersection form on H2.

Equivalently, the Donaldson power series is D = exp(Q/2).

Producing a new, homeomorphic surfaces by doing log transforms along
one or two fibers produces a surface with Donaldson invariants which are
polynomials in Q and multiplies of the exceptional fibers, which then are
different from the Donaldson polynomial of the K3. These give examples
of homeomorphic, non-diffeomorphic surfaces.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 54 / 106



The ASD equations are equations much studied by the physicists, and,
after their use in this way in mathematics, physics produced a surprising
twist. The information in the Donaldson polynomial invariants can also be
obtained from a simpler set of equations called the Seiberg-Witten
equations. These are equations where the gauge group is abelian and (at
least in all known examples) the moduli spaces are zero dimensional.
While the invariants carry equivalent information, technically the SW
invariants have proved easier to deal with and are now routinely used
instead of the Donaldson invariants.

The argument that SW equations give the same information to the
Donaldson polynomials was originally a non-rigorous physics one using
properties of quantum field theories which have no mathematical
formulation to say nothing of mathematical proof. Now there are
mathematically rigorous arguments covering many cases, but still no
complete mathematical proof exists for this statement.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 55 / 106



The ASD equations are equations much studied by the physicists, and,
after their use in this way in mathematics, physics produced a surprising
twist. The information in the Donaldson polynomial invariants can also be
obtained from a simpler set of equations called the Seiberg-Witten
equations. These are equations where the gauge group is abelian and (at
least in all known examples) the moduli spaces are zero dimensional.
While the invariants carry equivalent information, technically the SW
invariants have proved easier to deal with and are now routinely used
instead of the Donaldson invariants.

The argument that SW equations give the same information to the
Donaldson polynomials was originally a non-rigorous physics one using
properties of quantum field theories which have no mathematical
formulation to say nothing of mathematical proof. Now there are
mathematically rigorous arguments covering many cases, but still no
complete mathematical proof exists for this statement.

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 55 / 106



Situation for compact, simply connected smooth
4-manifolds

We have two sets of invariants of these manifolds: the cohomology H2 its
intersection pairing and the Donaldson invariants, or the (believed to be
equivalent) Seiberg-Witten invariants. (There are also other invariants
inspired by these but they are now known to carry the same information).
The first set of invariants is equivalent to the homotopy type and cannot
distinguish homeomorphic smooth manifolds. The second has had much
success for certain classes of manifolds, for example algebraic surfaces and
symplectic manifolds where they can be computed from the geometric
structure.

Still, we hardly know anything. We do not know whether the smooth
version of the Poincaré Conjecture is true for 4-manifolds since the gauge
theory invariants do not say anything about these manifolds.

We also do not even have a guess for a classification of compact, simply
connected 4-manifolds.
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Exotic 4-manifolds

There is a construction due to Fintushel-Stern which constructs for each
knot in S3 a smooth 4-manifold homeomorphic to the K3 surface (a
quartic hypersurface in CP3).

The K3 surface is fibered by tori (with finitely many singular fibers) over
S2. Fintushel-Stern remove a neighborhood of a generic fiber of the form
T 2 × D2 and glue in the product of a knot complement in S3 times a
circle in such a way that the boundary of a Seifert surface for the knot is
glued to {pt} × ∂D2. They show that the result is homeomorphic to the
K3 surface and the Seiberg-Witten invariants of the resulting manifold
contain the Alexander polynomial of the knot and hence this invariant of
the knot is captured by the smooth 4-manifold.

It is not at all unreasonable to conjecture that distinct knots produce
non-diffeomorphic 4-manifolds. If this is even close to being true, then one
begins to sense the complexity of smooth 4-manifold theory and how little
we understand.
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PART IV: KNOT INVARIANTS
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Consider a knot in 3-space or equivalently in the 3-sphere. A nice way to
present a knot is by taking a planar projection and then indicating at each
crossing which strand passes over and which passes under.

Figure: Figure Eight Knot
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The Alexander Polynomial of a Knot

There is a classical invariant of the knot, called the Alexander polynomial,
define by J. W. Alexander in 1927. Let K ⊂ S3 be a knot and let
X = S3 \ K . We have H1(X ;Z) = Z, so that X has a unique infinite
cyclic covering X̃ → X . The homology H1(X̃ ;Z) is a module over the ring
Λ = Z [t, t−1] with the action of t being the map induced on H1 by the
generating deck transformation of X̃ . One shows that this module is cyclic
and in fact can be written Λ/(∆), where ∆ ∈ Z[t, t−1] is defined up to
multiplication by ±tk . The polynomial ∆ is the Alexander polynomial.
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There is a Skein relation defining the Alexander polynomial:

Figure: The Skein relation for the Alexander Polynomial

That together with the initialization that ∆(trivial knot) = 1 determines
the Alexander polynomial
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The Jones Polynomial

Fifty years after the definition of the Alexander polynomial, Jones
introduced a new polynomial invariant of knots. The Jones polynomial can
be defined by the following Skein relation

Figure: Skein relation for the Jones polynomial

That together with the initialization J(trivial knot) = 1 determines the
Jones polynomial.
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The Jones Polynomial

Several things are not clear from the definition of the Jones polynomial.
First of all, the definition uses a planar projection, and one has to show
that it is an invariant of the knot, not the planar projection. There are a
sequence of elementary moves connecting any one planar projection to any
other, so one can prove that J(t) is an invariant of the knot by showing
that it is invariant under these moves. That is more or less what Jones did
originally.

Also, this definition clearly only works for knots in the 3-sphere, again
because of the use of a planar projection. It was not clear that this
polynomial extends to an invariant of knots in more general 3-manifolds.
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Khovanov homology

In 2000 Khovanov ‘categorified’ the Jones polynomial in the sense that he
associated to a knot K in S3 a bigraded chain complex ⊕i ,jC

i ,j with
d : C i ,j → C i+1,j whose homology KH i ,j(K ) is the Khovanov homology.
The let χj =

∑
i (−1)I rkKH i ,j(K ) be the Euler characteristic in the

i-direction. Then we have (q + q−1)−1
∑

j χjq
j is equal to J(K ), the

Jones polynomial of the knot (with the substitution q = t1/2).

Khovanov homology is strictly stronger than the Jones polynomial in the
sense that it distinguishes knots (and links) with the same Jones
polynomial
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The variable q + q−1 in Jones’ construction is replaced in Khovanov’s by a
graded free module A with a generators q, and q−1 of degree 1 and −1.
Khovanov takes a planar projection of the knot, resolves all the crossings
as in the skein relations and uses this to glue copies of tensor products of
A together – basically doing a skein relation in the abelian category of
modules over a given ring rather than in polynomials.

The same issues that arise for the Jones polynomial arise here. The
difficulty is in proving that the result is an invariant of the knot not the
planar projection. Also, Khovanov homology is defined only for knots in
S3.
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Physics approach to the Jones polynomial and Khovanov
homology

One of the first connections between low dimensional topology and
modern high energy theoretical physics was Witten’s approach to the
Jones polynomial from quantum field theory. He began with a topological
quantum field theory based on the Chern-Simons functional. Associated to
a connection A on the trivial G -bundle [take G compact and simple] over
a compact 3-manifold we form we form

CSk(A) =
k

4π

∫
M
tr(A ∧ dA +

2

3
A ∧ A ∧ A).
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Physics approach to the Jones polynomial and Khovanov
homology

Unlike most gauge functions, e.g. the Yang-Mills functional, the
Chern-Simons function does not depend on a metric on the manifold. It is
purely topological. If we change the trivialization of the bundle by a map
M → G , then CSk(A) changes by 2πk times the degree of the map from
H3(M)→ H3(G ) induced by the change of trivialization. This implies that
as long as k is an integer, the action exp(iCSk(A)) is invariant.
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Physics approach to the Jones polynomial and Khovanov
homology

If K ⊂ M is an oriented knot, then one adds to the action the trace of
holonomy of the connection around K (trace in a fixed representation R of
G ). This is denoted WR(K ) = trW (hol(A,K )). The action with this
‘operator’ is then

WR(K )exp(i

∫
M
CSk(A)).

As before this is a purely topological expression; there is no need to choose
a metric or other auxiliary geometric data.
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Physics approach to the Jones polynomial and Khovanov
homology

Witten argues that this theory can be quatntized for any knot (or link) in
any oriented 3-manifold (though one has to chose a framing on the
tangent bundle of the 3-manifold). The case G = SU(2) and R the
two-dimensional representation and M = S3 reproduces the Jones
polynomial (or rather the values of this polynomial at roots of unity).

One advantage of Witten’s approach is that it is manifestly 3-dimensional
from the beginning – there is no choice of planar projection, and as a
consequence he gets an extension to all 3-manifolds of a version of the
Jones polynomial. One disadvantage is that this argument is not
mathematically rigorous since it uses the full power of quantum field
theory, but it has spurred mathematical developments.
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Jones polynomial. One disadvantage is that this argument is not
mathematically rigorous since it uses the full power of quantum field
theory, but it has spurred mathematical developments.
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Physics Approach to Khovanov Homology

Witten and Kapustin have written down geometric partial differential
equations for a 5-dimensional theory whose moduli space they believe will
produce the Khovanov homology. Much work is being done now by various
mathematicians and physicists trying to show that these equations have
the sort of properties that allow one to deal in a reasonable way with the
moduli space of solutions. It is early days, but there is much interest and
some real progress in turning these equations and their solutions into a
useful mathematical theory.
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PART V: TOPOLOGY OF 3-MANIFOLDS
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As is the case for surfaces, every 3-manifold has a smooth structure. For a
Morse function F on M there are four types of critical points: those of
index 0 (local minima), those of index 1, those of index 2, and those of
index 3 (local maxima). As before we can arrange that there is a unique
local min and a unique local max and that all the critical points of index 1
have smaller value of the function than all those of index 2. We then split
the 3-manifold by the the level set Σ = F−1(t) for some value of t greater
than the value of F at every critical point of index 1 and less than the
value of F at every critical point of index 2.
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Heegaard Decomposition

The surface F−1(t) = Σ splits M into M− ∪Σ M+ where each of M± is
obtained by adding solid handles to a 3-ball. For simplicity let us assume
that M is orientable, Then Σ is orientable, i.e., Σ is a surface of genus
g ≥ 0 and each of M± is a solid handlebody with g handles.
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Heegaard Decomposition

The handlebody can be cut along g disks to produce a ball.

We can recover M from the surface Σ and two sets of g curves:
{α1, . . . , αg} that bound disjoint cutting disks in M− and β1, . . . , βg that
bound the cutting disks in M+. Each family is independently completely
standard but together they contain the secret of the 3-manifold.
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Heegaard Decomposition

This description of M is called a Heegaard decomposition. Its genus is the
genus of the cutting surface. The problem is that a given 3-manifold has
many different Heegaard decompositions. For example, M is topologically
equivalent to S3 if and only if it has a Heegaard decomposition of genus 0.
But it has higher genus Heegaard decompositions which do not ‘simplify’
in any direct way to one of genus 0.
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Topological Invariants of M3

The only interesting homology group of a 3-manifold is its first homology
group which is the abelianization of the fundamental group. Not
surprisingly the fundamental group plays a central role in 3-manifold
theory.

The fundamental group of M is the fundamental group of the splitting
surface Σ modulo the normal subgroup generated by the curves
α1, . . . , βg . Another way to think about this is to take the free group on
x1, . . . , xg and then for each loop βi form a word in the xj by reading off,
in order as one goes around βi , the intersection points of βi with the αj

(an intersection point with αj adds the letter x±1
j to the end of the word

with the exponent recording the sign of the crossing).
The quotient of the free group generated by the xi by the normal subgroup
generated by the β-words is identified with the fundamental group of M.

The first homology of the 3-manifold is the abelianization of this which
can be read off from the matrix of homological intersections of the α and
β curves in the first homology of Σ.
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The Poincaré Conjecture

Conjecture

(Poincaré Conjecture) Let M be a compact 3-manifold, If M is simply
connected (i.e., its fundamental group is trivial), then M is homeomorphic
to the 3-sphere.

N.B. The converse is obvious.

Poincaré’s suggested method of proof was to simplify the Heegaard
decomposition, using the hypothesis of simple connectivity, to put the α
and β curves in good position with respect to each other.

To date no one has been able to make that argument work, despite
repeated attempts by many generations of topologists.
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PART VI. Locally homogeneous Riemannian 3-manifolds
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Riemannian curvature in higher dimensions

The analogue of Gauss curvature for higher dimensional manifolds is the
Riemann curvature tensor. In each two-plane direction at each point there
is a Gauss curvature. These fit together to produce a tensor with 4 indices
Rijk` that is skew symmetric in i , j , skew symmetric in k , ` and symmetric
in the interchange of i , j with k , `. Thus, we can view R as a quadratic
form on Λ2(TM). Given a pair of orthogonal unit vectors {e1, e2} the
value of the quadratic form on the element e1 ∧ e2 ∈ Λ2(TM) is called the
sectional curvature in the 2-pane direction spanned by e1 and e2.

A manifold has constant curvature if all the eigenvalues of the quadratic
form are equal, or equivalently if all the sectional curvatures are the same..
In all dimensions manifolds of constant negative curvature are hyperbolic.
They are described as the quotient of the unit ball in n-space with its
Poincaré metric divided out by a discrete, torsion-free group.
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Riemannian curvature in dimension 3

Viewed as a quadratic form on Λ2TM, the Riemann curvature tensor can
be diagonalized in an orthonormal basis. But this basis in general does not
consist of two-plane directions.

But in dimension 3 we have the duality between TM and Λ2TM which
means that every element of Λ2TM is a multiple of a two-plane direction.
This implies that at each point there is an orthonormal frame {e1, e2, e3}
such that the Riemann curvature tensor is diagonal in the basis
{e2 ∧ e3, e3 ∧ e1, e1 ∧ e2}.
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Definition

A Riemannian manifold M is homogeneous if its isometry group acts
transitively. In this case M = G/H where G is a Lie group and H is a
compact subgroup. The metric on M is induced from an H-invariant
metric on the Lie algebra g of G by left translation.
A Riemannian manifold is locally homogeneous if any two points p and q
have neighborhoods Up and Uq that are isometric.

Lemma

If M is a compact (or complete) locally homogeneous manifold then its
universal covering is homogeneous. In particular, there is a simply
connected Lie group G, a compact subgroup H, and a discrete group Γ
(either co-comapct or of co-finite volume) meeting H only in the identity
element such that M = Γ\G/H with the metric being induced by left
G-translation from an H-invariant metric on the Lie algebra g.
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Homogeneous 3-manifolds

The list of simply connected Lie groups G containing a compact subgoup
H of codimension 3 leads to the following exhaustive list of homogeneous
3-manifolds

S3, H3, and R3. These are the homogeneous 3-manifolds of constant
curvature.

S2 × R and H× R. These are the homogeneous 3-manifolds that are
products of (non-zero) constant curvature surfaces and the line

The universal cover of PSL(2,R)

The Heisenberg (nilpotent) group of matrices1 x z
0 1 y
0 0 1

 .

The solvable group R∗ nR2 where t ∈ R∗ acts linearly with
eigenvlaues t±1 on R2.
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Compact locally homogeneous 3-manifolds of the various types are:

Round (e.g. Lens spaces); flat, meaning finitely covered by a flat
3-torus; hyperbolic 3-manifolds

S2 × S1 or a manifold double covered by S2 × S1; a hyperbolic
surfaces times S1 or a manifold finitely covered by such.

a non-trivial circle bundle over a surface of genus > 1, or a manifold
finitely covered by such.

a non-trivial circle bundle over the torus, or a manifold finitely
covered by such.

a 2-torus bundle over the circle with Anosov monodromy.

Notice that all the various types are easy to list except for hyperbolic
manifolds. Hyperbolic manifolds are in natural one-to-one correspondence
with conjugacy classes of discrete, torsion-free co-compact subgroups of
PSL(2,C), which is the isometry group of hyperbolic 3-space. But there is
no classification of these subgroups of PSL(2,C).
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Thurston’s Geometrization Conjecture

As a first guess, one might be tempted to say that every compact
3-manifold has a locally homogeneous metric. There is a simple reason
why that is false. Except for S2 × R, all the homogeneous 3-manifolds
have trivial π2. That means that if a locally homogeneous 3-manifold has
non-trivial π2 then it is either S2 × S1 or double covered by this manifold.

On the other hand, it is easy to construct lots of manifolds with non-trivial
π2 by taking connected sum. Given M1 and M2 we remove a ball from
each and gluing the resulting manifolds with boundary together along their
2-sphere boundaries.
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Connected sum

If M1 nor M2 are 3-manifolds, neither homotopy equivalent to S3, e.g., if
they each have non-trivial fundamental group, then the 2-sphere along
which we glue the manifolds represents a non-trivial element in π2 of the
connected sum. Almost all such manifolds cannot be locally homogeneous.
For example if M1 and M2 are non-simply connected and the order of
π1(M2) is at least 3, the result is not locally homogeneous.
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Existence and Uniqueness of connected sum decomposition

It is a classical theorem in 3-manfiold topology that every 3-manifold
decomposes as a connected sum of prime 3-manifolds, those that have no
non-trivial connected sum decomposition. Furthermore, the prime factors
are unique up to isomorphism. Thus, to classify all three manifolds it
suffices to classify all prime 3-manifolds.
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The Geometrization Conjecture

The Geometrrization Conjecture is now a theorem.

Theorem

Let M3 be a compact, orientable prime 3-manifold. Then there exists a
finite set of disjoint 2-tori and Klein bottles T = T1, . . . ,Tk ⊂ M, such
that each component of M \ T has a locally homogeneous metric of finite
volume. If we choose T to have a minimal number of connected
components among all such collections, then the embedding of T into M
is unique up to isotopy. The manifold M is determined by the topological
type of components of M \ T and the isotopy classes of the gluings along
the components Ti .

John Morgan (University of Haifa, Israel) Topology, Geometry, and Physics March 28 – 30, 2017 87 / 106



The Geometrization Conjecture

The Geomerization Conjecture includes as a special case the Poincaré
Conjecture: If M is simply connected, the T must be empty and hence M
has a locally homogeneous geometry. Since M is simply connected, this
implies that it has a homogeneous geometry, which can only be the round
metric on S3.
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Ends of complete, locally homogeneous 3-manifolds of
finite volume

A complete hyperbolic surface of finite volume has a finite number of
ends. Each is diffeomorphic to S1 × [0,∞) and the cross-sectional length
decreases exponentially as we go to the end.

Thus, any end of a circle bundle over a hyperbolic surface of finite area is
diffeomorphic to T 2 × [0,∞).
Similarly, each end of a hyperbolic 3-manifold of finite volume is
diffeomorphic to T 2 × [0,∞) and the diameter and area of the
cross-sectional torus decrease at an exponential rate.
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The Ends
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PART VII: Perelman’s proof of the Geometrization
Conjecture
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Ricci Flow

Perelman’s approach is to use the Ricci flow equation introduced by
Hamilton, who also established many of the essential properties of this
flow. The Ricci flow equation is:

∂g

∂t
= −2Ric(g).

Let us understand the terms in this equation. We have a fixed manifold M
and a smoothly varying family of Riemannian metrics g(t). Recall that
g(t) is a symmetric contravariant 2-tensor; in local coordinates it is
gijdx

i ⊗ dx j with gij being a symmetric matrix of smooth functions of the
coordinates (x1, . . . , xn). It has the additional property of being positive
definite at every point.
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Given the smooth family g(t) of symmetric 2-forms we can differential
with respect to t. The result is a symmetric contravariant 2-tensor
∆ijdx

i ⊗ dx j with ∆ij being a symmetric matrix of smooth functions

∆ij =
∂gij(x, t)

∂t
.

This symmetric 2-form is no longer necessarily positive definite.

What about the right-hand side of

∂g

∂t
= −2Ric(g)?
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Ricci Curvature

The Ricci curvature is a symmetric contravariant 2-tensor, meaning in a
local coordinate system it is of the form Ricijdx

i ⊗ dx j with Ricij a
symmetric matrix of smooth funtions. It is obtained by tracing the
Riemannian curvature tensor Rijk` on the middle two inidices j , k.

For a 3-manifold, as we have already observed, at each point p there is an
orthonormal frame {e1, e2, e3} for the tangent space so that the Riemann
curvature is diagonalized meaning the {e1 ∧ e2, e2 ∧ e3, e3 ∧ e1} is a basis
for Λ2TMp in which the Riemannian curvature tensor, viewed as a
quadratic form on Λ2TMp, is diagonal. Let λ3, λ1, λ2 be the sectional
curvatures on these three planes. Then the Ricci curvature is diagonal
with respect to the basis {e1, e2, e3} of TMp and is given byλ2 + λ3 0 0

0 λ1 + λ3 0
0 0 λ1 + λ2


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Short-time Existence and Uniqueness

According to Hamilton, given a compact Riemannian manifold (M, g0)
there is a T > 0 and a solution to the Ricci flow equation (M, g(t))
defined for 0 ≤ t < T with g(0) = g0. This solution is unique in the sense
that given two solutions with the same initial condition they agree on their
common interval of definition.
This result follows from general PDE theory and the fact that modulo the
action of the diffeomorphism group the Ricci flow equation is a strictly
parabolic equation.
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Examples of Ricci flow

Consider the round metric g0 on Sn with constant Ricci curvature 1 (i.e.,
constant sectional curvature 1/(n − 1)). Then g(t) = (1− 2t)g0, and the
flow becomes singular at t = 1/2 when the metric shrinks to zero.

Consider a hyperbolic metric g0 on M with constant Ricci curvature
−1/(n − 1). Then g(t) = (1 + 2t)g0 and the flow exists for all positive
time and the hyperbolic manifold inflates by a constant (for each t) factor√

1 + 2t.
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Perelman’s approach

For any compact 3-manifold M, the first step is to choose (arbitrarily) a
Riemannian metric g0 on M. Then apply Ricci flow with this initial
condition. In the best circumstances, this flow will exist for all time
0 ≤ t <∞ and as t 7→ ∞ the manifold will decompose into pieces whose
geometry and/or topology we can understand.

There are two issues to confront:

(i) In general, the flow will not exist for all time but will have finite-time
singularities – we must understand how to extend the flow past these
to define a ‘Ricci flow with surgeries’ for all time, and

(ii) make the analysis as t 7→ ∞.
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The most difficult part of Perelman’s analysis is understanding
qualitatively the finite time singularities that develop in Ricci flow and
extending the flow past them. Hamilton showed that given a Ricci flow
(M, g(t)), 0 ≤ t < T0 <∞ then the solution extends to an interval
[0,T1) with T1 > T0 unless the curvature is unbounded as t 7→ T0.
Perelman showed that f the curvature is unbounded as t 7→ T0 then there
are three possible types of finite time singularities that can be occurring:

Components that shrink to a point at some finite time, and as they
shrink to a point the curvature approaches round. In particular, these
components have a metric of constant positive curvature.

Tubes diffeomorphic to S2 × (−L, L) where the cross sectional
2-spheres have large positive curvature.

Regions diffeommorphic the either B3 or to RP3 \B3 of large positive
curvature with ends S2 × [0, L) as in the previous case.
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Ricci flow with surgery

Let (M, g0) be a compact Riemannian 3-manifold and let
(M, g(t)), 0 ≤ t < T0 be the maximal Ricci flow with these initial
conditions. It T0 <∞ there are singularities, as described in the previous
slide forming as t 7→ T0. We define a manifold M(T0) as follows

As we approach T0, we remove any component shrinking to a point.
These have round metrics so removing them does not affect whether
the Geometrization Conjecture holds.

For components of the second type we remove the center of the tube
and cap off the two spheres by 3-balls of positive curvature. This
does a connected sum decomposition.

A component of the third type is either topologically a three-ball or
RP3 \ B3. We remove this component and cap off the end with a
3-ball. This either does not affect the topology or removes a
connected sum with RP3.

Away from these regions we take the limiting metric. This defines
M(T0), g(T0))
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Ricci flow with surgery

It follows from the description on the previous slide, that if M(T0) satisfies
the Geometrization Conjecture then the same is true of the manifold
before surgery. Now we restart the Ricci flow at time T0 with
(M(T0), g(T0) as the initial conditions at time T0. We continue this
process inductively, producing a Ricci flow with singularities defined for all
positive time (M(t), g(t), 0 ≤ t <∞, whose initial condition is the is
(M, g0). If we can show that the manifold M(t) for t sufficiently large
satisfies the geometrization hypothesis then so does M.

So we turn to the analysis of M(t) for t >> 1.
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Scales

Consider a 3-dimensional Ricci flow with surgery (M(t), g(t)). We denote
points in this flow by (x , t) meaning that x ∈ M(t). The ball in M(t)
centered at x with radius r (with respect to g(t)) is denoted B(x , t, r).

Definition

We define the Euclidean volume constant of a ball B(x , t, ρ) to be the
constant w with the property that vol(B(x , t, ρ) = wρ3. This is invariant
under rescaling. We say that a ball is w -collapsed if its Euclidean volume
constant is less than w .
We define the negative curvature scale ρ(x , t) to be the supremum of the
ρ > 1 such that all sectional curvatures on B(x , t, ρ) are bounded below
by −ρ−2. This is also a scale-invariant notion. This simply means that if
we rescale the ball to have radius 1, then all the sectional curvatures are
bounded below by −1.
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We define the negative curvature scale ρ(x , t) to be the supremum of the
ρ > 1 such that all sectional curvatures on B(x , t, ρ) are bounded below
by −ρ−2. This is also a scale-invariant notion. This simply means that if
we rescale the ball to have radius 1, then all the sectional curvatures are
bounded below by −1.
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Limits as t 7→ ∞

As the next two propositions indicate, the natural metric to use as t 7→ ∞
is (1/t)g(t)

Proposition

Fix a constant w > 0. Then for any r > 0 and any ε > 0 there is T <∞
such that if t > T and if r

√
t is less than the negative curvature scale

ρ(x , t) and if B(x , t, r
√
t) has Euclidean volume constant at least w then

for the rescaled metric 1
t g(t) the Ricci curvature is within ε of −1.

Furthermore, given A <∞ if t is greater than a constant T (A) then the
same is true for all (y , s) with y ∈ B(x , t,Ar

√
t) and s ∈ [t, t + Ar2t].

Proposition

For any w > 0 there is ρ̄ = ρ̄(w) > 0 such that for all t sufficiently large if
ρ(x , t) < ρ̄

√
t then the Euclidean volume of B(x , t, ρ(x , t) is less than w.
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Limits as t 7→ ∞

Fix w > 0 and define M−(t,w) to be those (x , t) for which the Euclidean
volume constant of B(x , t, ρ(x , t) is less than w , and we set M+(t,w)
equal to its complement in M(t). By the second proposition, for any
(x , t) ∈ M+(t,w) the negative curvature scale is at least ρ̄(w)

√
t. Thus,

for every (x , t) in M+(w , t) the first proposition applies to show that for t
sufficiently large after rescaling the metric by t−1 the curvature on the ball
B(x , ρ̄(w)) is every where close to −1 and this statement remains true for
a time interval of length Aρ(x , t). It follows that M+(t,w) with the
rescaled metric t−1g(t) converges to (possibly disconnected) hyperbolic
manifold of finite volume.
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Limits as t 7→ ∞

Now let us consider M−(t,w). It is w -collapsed on its negative curvature
scale. Rescaling to make the negative curvature scale 1, we have a ball of
radius 1 with sectional curvature bounded below by −1 which is volume
collapsed. Such balls are Gromov-Hausdorff close to balls in spaces of
dimension 0, 1 or 2.

Points at which the approximating space is zero dimensional can be
rescaled again to converge to a flat manifold.
At points where the approximating space is 2-dimensional one shows that
M−(t,w) is fibered by circles over a ball (or more generally Seifert fibered).
At points where the approximating space is 1 dimensional, one shows that
M−(t,w) is a fibration over the interval or circle with fibers either S2, or
T 2.
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The local description can be pieced together to give a decomposition of
M−(t,w) for w sufficiently small. The decomposition is along tori and
Klein bottles into pieces that are Seifert fibered, T 2 × I , and 2-torus
bundles over the circle, and compact flat manifolds. All these have locally
homogeneous geometries of finite volume (not necessarily coming from the
Ricci flow, but rather from the topological classification of such manifolds).

This completes the (outline) of the proof of the Geometrization
Conjecture.
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THANK YOU
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