Moment categories and operads

Clemens Berger

University of Nice-Sophia Antipolis

University of Haifa Geometry & Topology Seminar March 14, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Related concepts (replacing "inert part" with ~->]

Summary (active/inert factorisation system)						
$\stackrel{\textit{moments}}{\leadsto}$ moment category $\stackrel{\textit{units}}{\leadsto}$ operad-type $\stackrel{\textit{plus}}{\leadsto}$ Segal presheaf						
		\mathbb{C} -operad		\mathbb{C}_{∞} -monoid		
	Γ	sym. operad	comm. monoid	E_{∞} -space		
	\triangle	non-sym. operad	assoc. monoid	A_{∞} -space		
		<i>n</i> -operad		<i>E_n-space</i>		
	Ω	tree-hyperoperad	sym. operad	∞ -operad		
	Γţ	graph-hyperoperad	properad	∞ -properad		

Related concepts (replacing "inert part" with ↔)

Summary (active/inert factorisation system)						
$\stackrel{moment}{\sim}$	^{ts} mon	nent category $\stackrel{units}{\rightsquigarrow}$	operad-type	$\stackrel{\textit{plus}}{\leadsto} \text{Segal presheaf}$		
		\mathbb{C} -operad				
	Γ	sym. operad	comm. monoid	E_{∞} -space		
	Δ	non-sym. operad	assoc. monoid	A_{∞} -space		
		<i>n</i> -operad		E _n -space		
	Ω	tree-hyperoperad	sym. operad	∞ -operad		
	Γţ	graph-hyperoperad	properad	∞ -properad		

Related concepts (replacing "inert part" with ↔)

Summary (active/inert factorisation system)						
$\overset{\textit{moments}}{\leadsto} \text{moment category} \overset{\textit{units}}{\leadsto} \text{operad-type} \overset{\textit{plus}}{\leadsto} \text{Segal preshea}$						
	\mathbb{C}	\mathbb{C} -operad	\mathbb{C} -monoid	\mathbb{C}_{∞} -monoid		
	Г	sym. operad	comm. monoid	E_{∞} -space		
	Δ	non-sym. operad	assoc. monoid	A_{∞} -space		
	Θ_n	<i>n</i> -operad	<i>n</i> -monoid	<i>E_n-space</i>		
	Ω	tree-hyperoperad	sym. operad	∞ -operad		
	Γţ	graph-hyperoperad	properad	∞ -properad		

Related concepts (replacing "inert part" with \rightsquigarrow

Summary (active/inert factorisation system)						
$\overset{\textit{moments}}{\leadsto} \text{moment category} \overset{\textit{units}}{\leadsto} \text{operad-type} \overset{\textit{plus}}{\leadsto} \text{Segal presheaf}$						
	\mathbb{C}	\mathbb{C} -operad	\mathbb{C} -monoid	\mathbb{C}_{∞} -monoid		
	Г	sym. operad	comm. monoid	E_∞ -space		
	Δ	non-sym. operad	assoc. monoid	A_{∞} -space		
	Θ_n	<i>n</i> -operad	<i>n</i> -monoid	<i>E_n</i> -space		
	Ω	tree-hyperoperad	sym. operad	∞ -operad		
	Γţ	graph-hyperoperad	properad	∞ -properad		

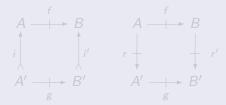
Related concepts (replacing "inert part" with \rightsquigarrow)

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system ($\mathbb{C}_{act}, \mathbb{C}_{in}$) such that

each inert map admits a unique active retraction;

(2) if the left square below commutes then the right square as well



where r, r' are the active retractions of i, i' provided by (1).

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system (\mathbb{C}_{act} , \mathbb{C}_{in}) such that

(1) each inert map admits a unique active retraction;

(2) if the left square below commutes then the right square as well

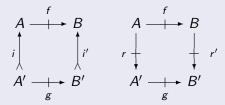
where r, r' are the active retractions of i, i' provided by (1).

Definition (moment category)

A moment category is a category \mathbb{C} with an active/inert factorisation system (\mathbb{C}_{act} , \mathbb{C}_{in}) such that

(1) each inert map admits a unique active retraction;

(2) if the left square below commutes then the right square as well



where r, r' are the active retractions of i, i' provided by (1).

Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi : A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$ For $f : A \to B$ define $f_* : m_A \to m_B$ by

Lemma (inert subobjects vs moments)

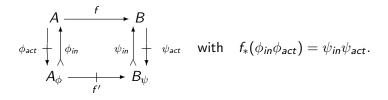
For each object A of a moment category \mathbb{C} there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi : A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$ For $f : A \to B$ define $f_* : m_A \to m_B$ by

Lemma (inert subobjects vs moments)

For each object A of a moment category \mathbb{C} there is a bijection between *inert subobjects* of A and *moments* of A, i.e. endomorphisms $\phi : A \to A$ sth. $\phi = \phi_{in}\phi_{act} \implies \phi_{act}\phi_{in} = 1_A$.

Put $m_A = \{ \phi \in \mathbb{C}(A, A) \mid \phi_{act}\phi_{in} = 1_A \}$ For $f : A \to B$ define $f_* : m_A \to m_B$ by



The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

- $[m] \xrightarrow{r} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- [m] → [n] is inert provided f is distance-preserving, i.e. f(i + 1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.



- $[m] \xrightarrow{r} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- [m] → [n] is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

- [m] → [n] is active provided f is endpoint-preserving, i.e.
 f(0) = 0, f(m) = n.
- [m] → [n] is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category
$$\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps})$$

• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- [m] → [n] is active provided f is endpoint-preserving, i.e.
 f(0) = 0, f(m) = n.
- [m] → [n] is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category
$$\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps})$$

• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category
$$\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps})$$

• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

Example (simplex category Δ)

• $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.

• $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

The moment set m_A is a submonoid of $\mathbb{C}(A, A)$ consisting of idempotent elements satisfying the relation $\phi\psi\phi = \phi\psi$.

Example (Segal's category
$$\Gamma \rightsquigarrow \Gamma^{\text{op}} = \text{finite sets and partial maps})$$

• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ active provided $\underline{n}_1 \cup \dots \cup \underline{n}_m = \underline{n}$. (partition)
• $\underline{m} \xrightarrow{(\underline{n}_1, \dots, \underline{n}_m)} \underline{n}$ inert provided all \underline{n}_i are singleton. (embedding)

- $[m] \xrightarrow{f} [n]$ is active provided f is endpoint-preserving, i.e. f(0) = 0, f(m) = n.
- $[m] \xrightarrow{f} [n]$ is inert provided f is distance-preserving, i.e. f(i+1) = f(i) + 1 for all i.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >---- <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of ∆. Elementary inert subobjects [1] >→→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >---- <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of ∆. Elementary inert subobjects [1] >→→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is *centric* if $\phi_{\textit{in}}$ is the only inert section of $\phi_{\textit{act}}.$
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >---- <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of ∆. Elementary inert subobjects [1] >→→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is *centric* if ϕ_{in} is the only inert section of ϕ_{act} .
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >---- <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of ∆. Elementary inert subobjects [1] >→→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is *centric* if $\phi_{\textit{in}}$ is the only inert section of $\phi_{\textit{act}}.$
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >→ <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of △. Elementary inert subobjects [1] >→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is centric if $\phi_{\textit{in}}$ is the only inert section of $\phi_{\textit{act}}.$
- A *unit* is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >→ <u>n</u> are elements. Cardinality of el_n is n.
- [0] is the nilobject, and [1] the unit of △. Elementary inert subobjects [1] >→ [n] are segments. Cardinality of el_[n] is n.

- A moment ϕ is centric if $\phi_{\textit{in}}$ is the only inert section of $\phi_{\textit{act}}.$
- A unit is an object U sth. 1_U is the only centric moment but $m_U \neq \{1_U\}$, and every active map with target U admits exactly one inert section.
- A moment is *elementary* if it splits over a unit. The set of elementary moments of A is denoted el_A ⊂ m_A.
- An object without elementary moments is called a *nilobject*.

- <u>0</u> is the nilobject, and <u>1</u> the unit of Γ. Elementary inert subobjects <u>1</u> >→ <u>n</u> are elements. Cardinality of el_{<u>n</u>} is n.
- [0] is the nilobject, and [1] the unit of Δ. Elementary inert subobjects [1] → [n] are segments. Cardinality of el_[n] is n.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

• a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;

• a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \to \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

- Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \dots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \dots + n_m}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

• a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;

• a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \to \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

Example (Γ and Δ)

- Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \dots + n_m}$ for each $\underline{m} \longrightarrow \underline{n}$
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \dots + n_m}$ for each $[m] \longrightarrow [n]$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

Example (Γ and Δ)

- Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_m \otimes \cdots \otimes \mathcal{O}_m \to \mathcal{O}_m + \dots + n_m$ for each m
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \dots + n_m}$ for each $[m] \longrightarrow [n]$.

・ロト・西ト・市・・日・ うへの

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

- Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1+\dots+n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

Example (Γ and Δ)

• Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1+\dots+n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.

• Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$.

A \mathbb{C} -operad \mathcal{O} in a symmetric monoidal category $(\mathbb{E}, \otimes, I_{\mathbb{E}})$ assigns to each object A of \mathbb{C} an object $\mathcal{O}(A)$ of \mathbb{E} , together with

- a unit $I_{\mathbb{E}} \to \mathcal{O}(U)$ in \mathbb{E} for each unit U of \mathbb{C} ;
- a unital, associative and equivariant composition $\mathcal{O}(A) \otimes \mathcal{O}(f) \rightarrow \mathcal{O}(B)$ for each active $f : A \longrightarrow B$, where $\mathcal{O}(f) = \bigotimes_{\alpha \in el_A} \mathcal{O}(B_{f_*(\alpha)}).$

- Γ -operads=symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \to \mathcal{O}_{n_1+\dots+n_m}$ for each $\underline{m} \longrightarrow \underline{n}$.
- Δ -operads=non-symmetric operads: $\mathcal{O}_m \otimes \mathcal{O}_{n_1} \otimes \cdots \otimes \mathcal{O}_{n_m} \rightarrow \mathcal{O}_{n_1 + \cdots + n_m}$ for each $[m] \longrightarrow [n]$.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories $\mathcal{A},\mathcal{B})$

 $Ob(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{\alpha}) | \mathcal{A} \in Ob(\mathcal{A}), \alpha \in d_{\mathcal{A}}, \mathcal{B}_{\alpha} \in Ob(\mathcal{B}) \}$ $(f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{\alpha}) \longrightarrow (\mathcal{A}', \mathcal{B}_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

 $Ob(\mathcal{A} \wr \mathcal{B}) = \{ (A, B_{\alpha}) \mid A \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, B_{\alpha} \in Ob(\mathcal{B}) \}$ $(f, f_{\alpha}^{\beta}) : (A, B_{\alpha}) \longrightarrow (A', B_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

 $Ob(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{\alpha}) \mid \mathcal{A} \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, \mathcal{B}_{\alpha} \in Ob(\mathcal{B}) \}$ $(f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{\alpha}) \longrightarrow (\mathcal{A}', \mathcal{B}'_{\beta}) \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha).$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

 $Ob(\mathcal{A} \wr \mathcal{B}) = \{ (\mathcal{A}, \mathcal{B}_{\alpha}) \mid \mathcal{A} \in Ob(\mathcal{A}), \alpha \in el_{\mathcal{A}}, \mathcal{B}_{\alpha} \in Ob(\mathcal{B}) \}$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

 $\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{\alpha}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), \alpha \in \operatorname{el}_{\mathcal{A}}, \mathcal{B}_{\alpha} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{\alpha}) \longrightarrow (\mathcal{A}', \mathcal{B}_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha). \end{array}$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

Definition (unital moment categories)

For every object A, el_A has finite cardinality and receives an essentially unique active morphism $U_A \longrightarrow A$ from a unit.

Proposition (universal role of Γ)

For every unital moment category \mathbb{C} there is an essentially unique cardinality preserving moment functor $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$.

Definition (wreath product of unital moment categories \mathcal{A}, \mathcal{B})

 $\begin{array}{l} \operatorname{Ob}(\mathcal{A} \wr \mathcal{B}) = \{(\mathcal{A}, \mathcal{B}_{\alpha}) \mid \mathcal{A} \in \operatorname{Ob}(\mathcal{A}), \alpha \in \operatorname{el}_{\mathcal{A}}, \mathcal{B}_{\alpha} \in \operatorname{Ob}(\mathcal{B})\} \\ (f, f_{\alpha}^{\beta}) : (\mathcal{A}, \mathcal{B}_{\alpha}) \longrightarrow (\mathcal{A}', \mathcal{B}_{\beta}') \text{ where } f_{\alpha}^{\beta} \text{ for each } \beta \leq f_{*}(\alpha). \end{array}$

Proposition

Joyal's category Θ_n is an iterated wreath product $\Delta \wr \cdots \wr \Delta$. Θ_n -operads are Batanin's (n-1)-terminal *n*-operads.

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n*-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

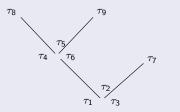
- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n*-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

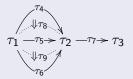
- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n*-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n-graph* defined by the *inert subobjects* of T whose domains are subobjects of U_n.

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n*-graph defined by the inert subobjects of T whose domains are subobjects of U_n.

- Objects of Θ_n correspond to *n*-level trees.
- There is a unique unit U_n , the linear tree of height n.
- $\gamma_{\Theta_n}: \Theta_n \to \Gamma$ takes *n*-level tree to its set of height *n* vertices.
- Active maps S → T correspond to Batanin's S_{*}-indexed decompositions of T_{*}, where T_{*} is the *n*-graph defined by the inert subobjects of T whose domains are subobjects of U_n.





• $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes el_A}, X)$ (endomorphism- \mathbb{C} -operad of X).

- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes e|_A}$.

• $X(f: A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed $\mathbb E)$

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

• $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).

• $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).

• C-monoid=algebra over the unit-C-operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes el_A}$. • $X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)})$.

Lemma (presheaf presentation for cartesian closed $\mathbb E)$

 \mathbb{C} -monoids arise from presheaves $X : \mathbb{C}^{\mathrm{op}} \to \mathbb{E}$ such that

• X(N) = * for every nilobject N.

• $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes el_A}$. • $X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_{\alpha} : U \longrightarrow B_{f_{\bullet}(\alpha)}).$

Lemma (presheaf presentation for cartesian closed $\mathbb E)$

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes el_A}$. • $X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_\alpha(\alpha)})$.

Lemma (presheaf presentation for cartesian closed $\mathbb E)$

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes el_A}$. • $X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)})$.

Lemma (presheaf presentation for cartesian closed $\mathbb E$)

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E}) \mathbb{C} -monoids are presheaves $X : \mathbb{C}_{act}^{op} \to \mathbb{E}$ such that • $X(A) = X^{\otimes el_A}$.

• $X(f: A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$

Lemma (presheaf presentation for cartesian closed $\mathbb E$)

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 $\mathbb{C}\text{-monoids}$ are presheaves $X:\mathbb{C}_{\mathit{act}}^{\operatorname{op}}\to\mathbb{E}$ such that

•
$$X(A) = X^{\otimes \mathrm{el}_A}$$
.

•
$$X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$$

_emma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition)

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 $\mathbb{C}\text{-monoids}$ are presheaves $X:\mathbb{C}_{\mathit{act}}^{\operatorname{op}}\to\mathbb{E}$ such that

•
$$X(A) = X^{\otimes \mathrm{el}_A}$$
.

•
$$X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

 $\mathbb{C}\text{-monoids}$ arise from presheaves $X:\mathbb{C}^{\operatorname{op}}\to\mathbb{E}$ such that

• X(N) = * for every nilobject N.

• $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 $\mathbb{C}\text{-monoids}$ are presheaves $X:\mathbb{C}_{\mathit{act}}^{\operatorname{op}}\to\mathbb{E}$ such that

•
$$X(A) = X^{\otimes \mathrm{el}_A}$$
.

•
$$X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

 \mathbb{C} -monoids arise from presheaves $X: \mathbb{C}^{\mathrm{op}} \to \mathbb{E}$ such that

• $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition).

- $\mathcal{E}_X(A) = \hom_{\mathbb{E}}(X^{\otimes \mathrm{el}_A}, X)$ (endomorphism- \mathbb{C} -operad of X).
- $\mathcal{O} \to \mathcal{E}_X$ (\mathcal{O} -algebra structure on X).
- \mathbb{C} -monoid=algebra over the unit- \mathbb{C} -operad.

Lemma (presheaf presentation for closed symmetric monoidal \mathbb{E})

 $\mathbb{C}\text{-monoids}$ are presheaves $X:\mathbb{C}_{\mathit{act}}^{\operatorname{op}}\to\mathbb{E}$ such that

•
$$X(A) = X^{\otimes \mathrm{el}_A}$$
.

•
$$X(f : A \longrightarrow B) = \bigotimes_{\alpha \in el_A} X(f_\alpha : U \longrightarrow B_{f_*(\alpha)}).$$

Lemma (presheaf presentation for cartesian closed \mathbb{E})

- X(N) = * for every nilobject N.
- $X(A) \xrightarrow{\cong} \prod_{\alpha \in el_A} X(U)$ (strict Segal-condition).

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\rm C}$ preserves active (resp. inert) morphisms;
- for each A and 1 >→ γ_C(A), there is an ess. unique inert lift U >→→ A in C such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_C(A), there is an ess. unique inert lift U >→→ A in C such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_C(A), there is an ess. unique inert lift
 U >→ A in C such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

A hypermoment category \mathbb{C} comes equipped with an active/inert factorisation system and $\gamma_{\mathbb{C}}: \mathbb{C} \to \Gamma$ such that

- $\gamma_{\mathbb{C}}$ preserves active (resp. inert) morphisms;
- for each A and <u>1</u> >→ γ_ℂ(A), there is an ess. unique inert lift
 U >→ A in ℂ such that U satisfies the second unit-axiom.

- objects (dendrices) are finite rooted trees with leaves.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = dendrix insertion inert mono = outer face = dendrix embedding
- $\gamma_{\Omega}: \Omega \to \Gamma$ takes a dendrix to its vertex set.
- units = corollas C_n , one for each $n \in \mathbb{N}$.

Example (graphoidal category $\overline{\mathsf{\Gamma}_{\updownarrow}}$ of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$).

- Ω/Γ₁-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$)

- Ω/Γ_{t} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$)

- Ω/Γ_{t} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$)

- Ω/Γ₁-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}: \Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.

• units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$)

- Ω/Γ₁-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow}\to\Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \mathsf{\Gamma}_{\updownarrow}$).

- Ω/Γ₁-operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ₁-monoids=symmetric operads/properads (Vallette)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow}\to\Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_{\uparrow} -monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow}\to\Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_{\uparrow} -monoids=symmetric operads/properads (Vallette)

Example (graphoidal category Γ_{\uparrow} of Hackney-Robertson-Yau)

- objects (graphices) are finite directed graphs with directed leaves and no directed edge-cycle.
- every morphism decomposes into a degeneracy followed by active mono followed by inert mono.
- active mono = inner face = graphix insertion inert mono = outer face = graphix embedding
- $\gamma_{\Gamma_{\uparrow}}:\Gamma_{\uparrow} \to \Gamma$ takes a graphix to its vertex set.
- units = directed corollas $C_{n,m}$, one for each $(n,m) \in \mathbb{N}^2$.

Remark (hypermoment embeddings $\Delta \subset \Omega \subset \Gamma_{\uparrow}$)

- Ω/Γ_{\uparrow} -operads=tree/graph-hyperoperads (Getzler-Kapranov)
- Ω/Γ_{\uparrow} -monoids=symmetric operads/properads (Vallette)

Definition (plus construction for unital hypermoment categories $\mathbb C)$

- A C-tree ([m], A₀ → ··· → A_m) consists of [m] in Δ and a functor A₀ : [m] → C_{act} such that A₀ is a unit in C.
- A C-tree morphism (φ, f) consists of φ : [m] → [n] and a nat. transf. f : A → Bφ sth. f_i : A_i → B_{φ(i)} is inert for i ∈ [m].
- C⁺ is the category of C-trees and C-tree morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

人口 医水黄 医水黄 医水黄素 化甘油

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → ··· → A_m) consists of [m] in Δ and a functor A_• : [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- $\bullet \ \mathbb{C}^+$ is the category of $\mathbb{C}\text{-trees}$ and $\mathbb{C}\text{-tree}$ morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → · · · · → A_m) consists of [m] in Δ and a functor A_• : [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- $\bullet \ \mathbb{C}^+$ is the category of $\mathbb{C}\text{-trees}$ and $\mathbb{C}\text{-tree}$ morphisms.
- A vertex is given by $([1], U \longrightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → ··· → A_m) consists of [m] in Δ and a functor A_• : [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- \mathbb{C}^+ is the category of $\mathbb{C}\text{-trees}$ and $\mathbb{C}\text{-tree}$ morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → ··· → A_m) consists of [m] in Δ and a functor A_• : [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- \mathbb{C}^+ is the category of \mathbb{C} -trees and \mathbb{C} -tree morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → · · · · → A_m) consists of [m] in Δ and a functor A_• : [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- $\bullet \ \mathbb{C}^+$ is the category of $\ \mathbb{C}\text{-trees}$ and $\ \mathbb{C}\text{-tree}$ morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

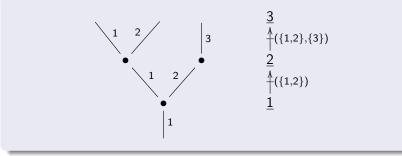
Definition (plus construction for unital hypermoment categories \mathbb{C})

- A C-tree ([m], A₀ → ··· → A_m) consists of [m] in Δ and a functor A_•: [m] → C_{act} such that A₀ is a unit in C.
- A \mathbb{C} -tree morphism (ϕ, f) consists of $\phi : [m] \to [n]$ and a nat. transf. $f : A \to B\phi$ sth. $f_i : A_i \to B_{\phi(i)}$ is inert for $i \in [m]$.
- $\bullet \ \mathbb{C}^+$ is the category of $\ \mathbb{C}\text{-trees}$ and $\ \mathbb{C}\text{-tree}$ morphisms.
- A vertex is given by $([1], U \rightarrow A) \rightarrow ([m], A_{\bullet})$.

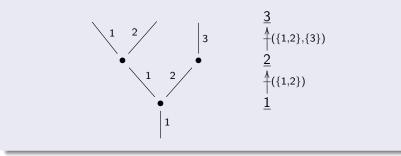
Theorem (cf. Baez-Dolan)

 \mathbb{C}^+ is a unital hypermoment category such that $\mathbb{C}\text{-operads}$ get identified with $\mathbb{C}^+\text{-monoids}.$

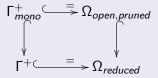
Proposition ($\Omega \supset \Gamma^+$, cf. Chu-Haugseng-Heuts)



Remark (reduced dendrices)



Remark (reduced dendrices)



A hypermoment category \mathbb{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that (\mathbb{C} -operads) \simeq ($\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category \mathbb{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition ($\mathbb C$ -tree insertion for extensional $\mathbb C$)

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that (\mathbb{C} -operads) \simeq ($\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category \mathbb{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that (\mathbb{C} -operads) \simeq ($\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category \mathbb{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that (\mathbb{C} -operads) \simeq ($\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

A hypermoment category \mathbb{C} is *extensional* if pushouts of inert maps along active maps exist, are inert and preserved by $\gamma_{\mathbb{C}}$.

Proposition (\mathbb{C} -tree insertion for extensional \mathbb{C})

 \mathbb{C} -trees can be inserted into vertices of \mathbb{C} -trees. There exists a Feynman category $\mathcal{F}_{\mathbb{C}}$ such that (\mathbb{C} -operads) \simeq ($\mathcal{F}_{\mathbb{C}}$ -algebras).

Theorem (monadicity for extensional $\mathbb C)$

The forgetful functor from \mathbb{C} -operads to \mathbb{C} -collections is monadic.

Remark

The Segal core \mathbb{C}_{Seg} is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if \mathbb{C}_{Seg} is dense in \mathbb{C}_{in} .

C	Δ	Θ_n	Ω	Γţ
$\mathbb{C}_{\mathrm{Seg}}$	[0] ightarrow [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
\mathbb{C} -gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
\mathbb{C} -cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C)$

The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic.

Thanks for your attention !

The Segal core \mathbb{C}_{Seg} is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if \mathbb{C}_{Seg} is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Γţ
\mathbb{C}_{Seg}	[0] ightarrow [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
C-gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
C-cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})

The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic.

Thanks for your attention !

The Segal core \mathbb{C}_{Seg} is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if \mathbb{C}_{Seg} is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Γţ
\mathbb{C}_{Seg}	[0] ightarrow [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
C-gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
C-cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital $\mathbb C)$

The forgetful functor from $\mathbb C\text{-}categories$ to $\mathbb C\text{-}graphs$ is monadic.

Thanks for your attention !

The Segal core \mathbb{C}_{Seg} is the subcategory of \mathbb{C}_{in} spanned by nil- and unit-objects. \mathbb{C} is strongly unital if \mathbb{C}_{Seg} is dense in \mathbb{C}_{in} .

\mathbb{C}	Δ	Θ_n	Ω	Γţ
\mathbb{C}_{Seg}	[0] ightarrow [1]	cell-incl. of	edge-incl. of	edge-incl. of
		glob. <i>n</i> -cell	corollas	dir. corollas
C-gph	graph	<i>n</i> -graph	multigraph	dir. multigraph
C-cat	category	<i>n</i> -category	col. operad	col. properad

Theorem (coloured monadicity for strongly unital \mathbb{C})

The forgetful functor from \mathbb{C} -categories to \mathbb{C} -graphs is monadic.

Thanks for your attention !