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The purpose

The main objectif of this talk is to understand the behave of vectors fields
that rose from the study of Mumford systems.

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 2/27



The purpose

The main objectif of this talk is to understand the behave of vectors fields
that rose from the study of Mumford systems.

To be able to to have an explicit solutions of the system Mumford.

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 2/27



The purpose

The main objectif of this talk is to understand the behave of vectors fields
that rose from the study of Mumford systems.

To be able to to have an explicit solutions of the system Mumford.

We will use the moto of Julius Caesar:

"Divide and rule” ("divide ut regnes” ).
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© What is Mumford System?

© Fibers

© Stratification

@ Geometrico-algebric description of of the fibres
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What is Mumford System?

To define Mumford system of order g, we need to define three object:
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What is Mumford System?

To define Mumford system of order g, we need to define three object:

@ Phase space,
e Family of vectors fields (Poisson structure),

@ Momentum map.

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 4 /27



We fix an integer g > 1. We work on the field C

Mumford system of order g progress on complex affine space named

Mg with ug, ..., Ug_1, Vo,...,Vg_1, W, ..., Wy its affine coordinated.

1% is formal variable
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We fix an integer g > 1. We work on the field C

Mumford system of order g progress on complex affine space named
Mg with ug, ..., Ug_1, Vo,...,Vg_1, W, ..., Wy its affine coordinated.
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We fix an integer g > 1. We work on the field C

Mumford system of order g progress on complex affine space named
Mg with ug, ..., Ug_1, Vo,...,Vg_1, W, ..., Wy its affine coordinated.
The phase space M, is defined as follow!:

Mg = {( :V(();)) _“‘EX) ) € My2(C[x]) such that

u(x) = x&+ ug_1x1 +ug oxE72 4+ wp,
v(X) = Veo1xE Tl v, oxE2 4 4w,
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We fix an integer g > 1. We work on the field C

Mumford system of order g progress on complex affine space named
Mg with ug, ..., Ug_1, Vo,...,Vg_1, W, ..., Wy its affine coordinated.
The phase space M, is defined as follow!:

Mg = {( :V(();)) _“‘EX) ) € My2(C[x]) such that

u(x) = x&+ ug_1x1 +ug oxE72 4+ wp,
v(X) = Veo1xE Tl v, oxE2 4 4w, ~ 3L
w(x) = x84+ wex& + wy_1x871 + -+ wy,

1% is formal variable
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Poisson structure

How to define Poisson structure?
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Poisson structure

How to define Poisson structure?
If we want to define the bracket {u;, uj} for 0 <i,j < g—1

{u(x), u(y)} = (X8 + ug—1xE™ 4+ o, ¥ + ug1y8 T + -+ o},

g1 ..
{u(x),uy)} = Y {ui u}x'y’.

ij=0
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Poisson structure

The Poisson structures on the space Mg are codified by these equations

(uGu()} = e v} =0,
vy} = X)=u)

(u(),w(y)) = —2Y)=v) 1)

v(x)w(y)y = —————— —ulx),
{w(x),w(y)} = 2(v(x) = v(y))-

The equations (0.1) enable us to know the Poisson bracket for the
coordinates functions ug_1,..., Uy, Vg_1,-..,V0, Wg, ..., Wp.
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Momentum map

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 8 /27



Let's note by H, the affine space of dimension 2g + 1 define by

Hy = {x*6" 4 ap;x%6 + -+ a9 | (azg, .-, a0) € C*&T1},
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Let's note by H, the affine space of dimension 2g + 1 define by

Hy = {x*6" 4 ap;x%6 + -+ a9 | (azg, .-, a0) € C*&T1},

The momentum map is noted H is define from M, to H,:

H: M, — H
v(x)  u(x)

A(x) = < w(x) —v(x) > —  —det(A(x)) = v(x)? + u(x)w(x).
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@ The composantes of H defines 2g + 1 polynomials functions of M,
denoted by ho, ..., hygy1 defined by,

2g+1

H(A(X) = > hi(A(x))x" (2)
i=0
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@ The composantes of H defines 2g + 1 polynomials functions of M,
denoted by ho, ..., hygy1 defined by,

2g+1

H(A(X) = > hi(A(x))x" (2)
i=0

e For y € C, denoted by (Hy)yE(C polynomials functions defined by

H: M, — C
A(x) — H(A(X))lx=y = — det(A(y)).
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Family of vectors fields

The two families of polynomials functions (h;)i=o,.. 2, and (Hy),cc enable
us to define a family of hamiltonian vectors fields.

We will denote the hamiltonians vectors fields:
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Family of vectors fields

The two families of polynomials functions (h;)i=o,.. 2, and (Hy),cc enable
us to define a family of hamiltonian vectors fields.

We will denote the hamiltonians vectors fields:

e D ={- h;j} foreach i =0,...,2g,
e D,={ H,} fory eC,

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u

Mumford systems July 30, 2017



Let A(x) = V() ulx) € Mg. Foreachy € C and 0 < i < 2g the
w(x) —v(x) & S

vecteurs fields D, at the point A(x) is define by the equation :

Dylap) = [A(X)’_:\(_yi - ( U(Oy) g )} ’
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o v(x)  u(x) .
Let A(x) = ( w(x) —v(x) > € Mg. Foreachy € C and 0 < i < 2g the

vecteurs fields D, at the point A(x) is define by the equation :

_ Ay) 0 0 )
Dy’A(x) = [A(X)’_x—y = ( u(y) 0 )} , Lax equation.
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o v(x)  u(x) .
Let A(x) = ( w(x) —v(x) > € Mg. Foreachy € C and 0 < i < 2g the

vecteurs fields D, at the point A(x) is define by the equation :

_ Ay) 0 0 )
Dy’A(x) = [A(X)’_x—y = ( u(y) 0 )} , Lax equation.

Since hj = Resy—¢ (Tfﬁ)
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o v(x)  u(x) .
Let A(x) = ( w(x) —v(x) > € Mg. Foreachy € C and 0 < i < 2g the

vecteurs fields D, at the point A(x) is define by the equation :

_ Ay) 0 0 )
Dy’A(x) = [A(X)’_x—y = ( u(y) 0 )} , Lax equation.

Since h; = Resx—g (Tfﬁ) then

Ol = [400: [552] (0 )] ©
A(x)

where [X,-H } N is the polynomial part.
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@ We note, from the equation (3),

A
(X)} — ( O_ 0 ) =0 for all i > g, therefore the functions
+

we have -
|:Xl+1 u; 0

hg, ..., hyg are Casimir functions for the Poisson structure {-,-}.
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@ We note, from the equation (3),

A
we have [ (fl)} — ( 0 0 ) =0 for all i > g, therefore the functions
x! n i 0

Uj

hg, ..., hyg are Casimir functions for the Poisson structure {-,-}.

g1
@ For y € C. The hamiltonian D, is D, = >~ y'D;.
i=0
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@ We note, from the equation (3),

A
we have [ (X)} — ( O_ 0 ) =0 for all i > g, therefore the functions
+

i+l u 0
hg, ..., hyg are Casimir functions for the Poisson structure {-,-}.

g1
@ For y € C. The hamiltonian D, is D, = >~ y'D;.
i=0

2g+1
By definition, H, (A(x)) = H(A(x))|x=y, therefore H, = >~ y'h; , we get

i=0

{'7 Hy} = Zyi{'v hi}
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@ We note, from the equation (3),

A
we have [ (X)} — ( O_ 0 ) =0 for all i > g, therefore the functions
+

i+l u 0
hg, ..., hyg are Casimir functions for the Poisson structure {-,-}.

g1
@ For y € C. The hamiltonian D, is D, = >~ y'D;.
i=0

2g+1
By definition, H, (A(x)) = H(A(x))|x=y, therefore H, = >~ y'h; , we get

i=0

{'7 Hy} = Zyi{'v hi} - Zyi{'a h;},
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@ We note, from the equation (3),

A

we have [ (fl)} — ( 0 0 ) =0 for all i > g, therefore the functions
x! I uj 0

h

g« - - hog are Casimir functions for the Poisson structure {,-}.

g1
@ For y € C. The hamiltonian D, is D, = >~ y'D;.
i=0

2g+1
By definition, H, (A(x)) = H(A(x))|x=y, therefore H, = >~ y'h; , we get

i=0
2g g—1

{'7 Hy} = Zyl{'7 hl} - Zyl{'a hi}a
i=0 i=0

thus

g1l
D, =>"y'D;.
i=0
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@ The g functions hy, ..., hg_1 are in involution,

{hi,h} =0for0<ij<g—1
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@ The g functions hy, ..., hg_1 are in involution,

{hi,h} =0for0<ij<g—1

@ The space
U = {A € Mgsuch that Do|la A -+ A Dg_1]a # 0}

is not empty, and it is a Zariski an open set dense in M.
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Proposition

The system (Mg, {-,-},H) is integrable in sens of Liouville of rank g. This
system is named Mumford system of order g.
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Momentum map is

H: M, — Hg
A(x) — —det(A(x)).

Let h € Hy. We denote by M,(h) = H1(h) the fibre above the
polynomial h.

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems

July 30, 2017



Momentum map is

H: M, — Hg
A(x) — —det(A(x)).

Let h € Hy. We denote by M,(h) = H1(h) the fibre above the
polynomial h. We distinguish two case

e A(h) #0,
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Momentum map is

H: M, — Hg
A(x) — —det(A(x)).

Let h € Hy. We denote by M,(h) = H1(h) the fibre above the
polynomial h. We distinguish two case

e A(h) #0,
o A(h) =0.
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Momentum map is

H: M, — Hg
A(x) — —det(A(x)).

Let h € Hy. We denote by M,(h) = H1(h) the fibre above the
polynomial h. We distinguish two case

e A(h) #0,
e A(h)=0.
When

A(h) #0 = My(h) ~ Jac(C) — O,

where C is curve with genus g.
Since Jac(C) is isomorphic to a torus, it was natural to find the solution
as theta function since it has a periodicity.
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Example

Let h € Hg such that h(x) = x? h'(x)
——
€EHz 1
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

_ v(x) u(x)
Alx) = xw'(x)  —xv'(x)
w(x) —v(x)
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

_ v(x) u(x)
A(x) = aw/(x) —xv(x) = deg GCD(u, v, w) # 0.
w(x) —v(x)

(A is not a regular matrix).
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

_ v(x) u(x)
A(x) = aw/(x) —xv(x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
g—1
Dyla=> y'Dila
i=0
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

A(x) = xv‘ul/(’)&) —;\(/)’(%x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
S, i valuate for y=0
Dyla=)_y'Dila “""=""""Dy—ola = Doa,
i=0
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

A(x) = xv‘ul/(’)&) —;\(/)’(%x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
S, i valuate for y=0
Dyla=)_y'Dila “""=""""Dy—ola = Doa,
i=0

According to Lax equation

Dyla = [A(x),— — ( /) 0 )]
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

A(x) = xv‘ul/(’)&) —;\(/)’(%x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
S, i valuate for y=0
Dyla=)_y'Dila “""=""""Dy—ola = Doa,
i=0

According to Lax equation

A y 0 0 evaluate for y=0
o2 ( 8 8] 5o
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

A(x) = xv‘ul/(’)&) —;\(/)’(%x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
S, i valuate for y=0
Dyla=)_y'Dila “""=""""Dy—ola = Doa,
i=0

According to Lax equation

A y 0 0 evaluate for y=0
o2 ( 8 8] 5o
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Let h € Hg such that h(x) = x> H'(x) = A(h) =0.
——

€EHz 1
There existe a matrix A(x) € Mg(h)

xv'(x)  xu'(x)

A(x) = xv‘ul/(’)&) —;\(/)’(%x) = deg GCD(u, v, w) # 0.
w(x) —v(x)
(A is not a regular matrix).
Recall
S, i valuate for y=0
Dyla=)_y'Dila “""=""""Dy—ola = Doa,
i=0

According to Lax equation

A y 0 0 evaluate for y=0
o2 ( 8 8] 5o

— 0= D0|A — dim < Dg_1|A,-~~ ,D0|A >< g
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conclude

o If A(x) = ( V() ”(X)) ) € M,(h) and

w(x) —v(x

GCD(u,v,w) = Q
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conclude

o If A(x) = ( V() ”(X)) ) € M,(h) and

w(x) —v(x

GCD(u,v,w) = Q@ = Q divided h
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conclude

o If A(x) = ( V() ”(X)) ) € M,(h) and

w(x) —v(x

GCD(u,v,w) = Q@ = Q divided h

Let A(x) = ( V() _”‘EX) > € Mg(h)
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conclude

o If A(x) = ( V() ”(X)) ) € M,(h) and

w(x) —v(x

GCD(u,v,w) = Q@ = Q divided h

Let A(x) = ( V() _”‘EX) > € Mg(h)

deg(GCD(u, v,w) = i) <
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conclude

o If A(x) = ( V() ”(X)) ) € M,(h) and

w(x) —v(x

GCD(u,v,w) = Q@ = Q divided h

Let A(x) = ( vl ulx > € Mg(h)

w(x) —v(x)

deg(GCD(u,v,w) =i) <= dim < Dg_1]a, -, Dola>=g —i

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 17 / 27



Stratification
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Stratification

Let (/,<) a partially ordered set. Stratification of affine variety V, is a
partition of V by a family (5;);c of quasi-affines variety such that :

For each i € [, the Zariski closure S; of S; is

S = |_| S;, (disjoint union). (4)

J<i

The sets S; are called stratum.
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o Let
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o Let

C[x]n = { monic polynomial Q € C|[x] such that (52(22) € C[x]}.
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o Let

C[x]n = { monic polynomial Q € C|[x] such that (52(22) € C[x]}.

The set (C[x]p,|) is a partially ordered set.
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o Let

C[x]n = { monic polynomial Q € C|[x] such that (52(2) € C[x]}.

The set (C[x]p,|) is a partially ordered set.
o Let Q € C[x], with deg(Q) = .
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o Let

C[x]n = { monic polynomial Q € C|[x] such that (52(2) € C[x]}.

The set (C[x]p,|) is a partially ordered set.

o Let Q € C[x], with deg(Q) = .
We denote by

Mg.q(h) = {A(X) = ( :/(())?) _U‘E?X) ) € Mg (h) such that

GCD(u,v,w) = Q}.
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o Let

C[x]n = { monic polynomial Q € C|[x] such that (52(2) € C[x]}.

The set (C[x]p,|) is a partially ordered set.

o Let Q € C[x], with deg(Q) = .
We denote by

Mg.q(h) = {A(X) = ( :/(())?) _U‘E?X) ) € Mg (h) such that

GCD(u,v,w) = Q}.

Remark, If

A(X) S Mg,Q(h) — dim < Dg—l’A;"' ;DO‘A >=g — deg(Q) =g —j
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The family (Mg:Q(h))QE(C[X] is stratification.
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Relation between Any stratum and Mumford system of

lower degree
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Relation between Any stratum and Mumford system of

lower degree

Let h € Hg and Q € C[x], with deg(Q) =, , note i = g —
Let
A(x) € Mg.o(h) = A(x) = Q(x)Aq(x),

IA

deg(uq)
AQ(X):( vo(x)  ue() > with { deg(vo) i—1,
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Relation between Any stratum and Mumford system of

lower degree

Let h € Hg and Q € C[x], with deg(Q) =, , note i = g —
Let
A(x) € Mg.o(h) = A(x) = Q(x)Aq(x),

i—1,

deg(ugq)
AQ(X):( vo(x)  ug(x) > with {  deg(vo) -1
I+ 1.

deg(wq)

IIA
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Relation between Any stratum and Mumford system of

lower degree

Let h € Hg and Q € C[x], with deg(Q) =, , note i = g —
Let
A(x) € Mg.o(h) = A(x) = Q(x)Aq(x),

Where
deg(ug) = 1,
o) — vQ(x)  ug(x) wi eg(v =
Aq(x) = ( wo(x) —vo(x) > th :egg((w(;)) i i+1?

H(AQ) = —det(Aq) = v§ + ugvq with deg(hg) =2i +1

hq
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Relation between Any stratum and Mumford system of

lower degree

Let h € Hg and Q € C[x], with deg(Q) =, , note i = g —
Let
A(x) € Mg.o(h) = A(x) = Q(x)Aq(x),

Where
deg(ug) = 1,
o) — vQ(x)  ug(x) wi eg(v =
Aq(x) = ( wo(x) —vo(x) > th :egg((w(;)) i i+1?

H(AQ) = —det(Aq) = v§ + ugvq with deg(hg) =2i +1

hq

since GCD(UQ, VQ, WQ) =1

AQ(X) € M;,l(hQ).
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Relation between any stratum M, o(h) and stratum

Mumford system of lower degree

Mg.q(h) <= M;i(hg)
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Relation between any stratum M, o(h) and stratum

Mumford system of lower degree
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Relation between any stratum M, o(h) and stratum

Mumford system of lower degree

~

Mg.q(h)  «— Mi1(hq)
QE)Ag(x) «%  Ag(x)

Any stratum of the stratification (Mg, q(h))gec,[x] is isomorphic to a
stratum of an Mumford system of lower degree of the form

( Mg—deg(Q),l ( &)) QEeCh[x]-
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Geometrico-algebric description of of the fibres
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Geometrico-algebric description of of the fibres

Let h € Hg.
Let us denote h monic polynomial such that h(x) = P?(x)h(x), with the

discriminant of A’ is non zero and deg i’ = 2g" + 1.
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Geometrico-algebric description of of the fibres

Let h € Hg.
Let us denote h monic polynomial such that h(x) = P?(x)h(x), with the

discriminant of A’ is non zero and deg i’ = 2g" + 1.
The factorization of the polynomial of P is the following:

k
P(x) = [I(x—a)". (5)

i=1

The roots a; € C of P(x) are all distinct,

July 30, 2017
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Remark

@ Any A € M,(h) have the same characteristic polynomial y? — h(x),

Yasmine Fittouhi ( Yasmine.Fittouhi@math.u Mumford systems July 30, 2017 24 /27



@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.
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@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.

@ The matrixes A € Mg(h) have not the same eigenvectors.
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Let C be a singular hyper-elliptic curve of the affine equation y2 = h(x)
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@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.

@ The matrixes A € Mg(h) have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation y? = h(x) and let
C’ be the normalize curve of C, this curve is smooth hyper-elliptic curve of the
affine equation z> = h’(x). The arithmetic genus of C is g and the arithmetic

genus of C' si g’.
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@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.

@ The matrixes A € Mg(h) have not the same eigenvectors.
Let C be a singular hyper-elliptic curve of the affine equation y? = h(x) and let
C’ be the normalize curve of C, this curve is smooth hyper-elliptic curve of the
affine equation z> = h’(x). The arithmetic genus of C is g and the arithmetic
genus of C’ si g’.Here is the morphism ¢ between C’ and C:
e : C — C
(x,2) — (x,P(x)z).
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@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.

@ The matrixes A € Mg(h) have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation y? = h(x) and let
C’ be the normalize curve of C, this curve is smooth hyper-elliptic curve of the
affine equation z> = h’(x). The arithmetic genus of C is g and the arithmetic
genus of C’ si g’.Here is the morphism ¢ between C’ and C:
e : C — C
(x,2) — (x,P(x)z).

Let m a module of C’:

with b2 = H(a;) for 1 < i < k.
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@ Any A € M,(h) have the same characteristic polynomial y? — h(x),
@ All matrixes A € M;(h) have the same eigenvalue y? — h(x) = 0.

@ The matrixes A € Mg(h) have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation y? = h(x) and let
C’ be the normalize curve of C, this curve is smooth hyper-elliptic curve of the
affine equation z> = h’(x). The arithmetic genus of C is g and the arithmetic
genus of C’ si g’.Here is the morphism ¢ between C’ and C:
e : C — C
(x,2) — (x,P(x)z).

Let m a module of C’:

with b? = h'(a;) for 1 < i < k.
The image by the morphism ¢ of support of the divisor m corresponds to the
singulars points of the curve C’.
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We denote by ® the map between Mg 1(h) and Jacy(C’) defines as follow:
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We denote by ® the map between Mg 1(h) and Jacy(C’) defines as follow:
o : Mg 1(h) — Jacn(C)

k
x—a;)lit(P(x)z+v(x))
v(x)  u(x) e
( w(x) —v(x) > — u(x) +1 ’
+

The map @ is an isomorphism between M, 1(h) and an set open of the
jacobian Jacy(C').
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We denote by ® the map between Mg 1(h) and Jacy(C’) defines as follow:
o : Mg 1(h) — Jacn(C)

k
x—a;)bitH(P(x)z+v(x))
v(x)  u(x) LLCeai)
(i Sy ) 0 ) e
+

The map @ is an isomorphism between M, 1(h) and an set open of the
jacobian Jacy(C').

Mumford system is an Algebraic complete integrability (a.c.i).
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Since
Jac(C') x C*" x C™.

The fibres are isomorphic to Jacobian of smooth hyper-elliptic curve

Jac(C’) extended by a multiplicative group (C*", x) and an additive group
(C™ +).
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Since
Jac(C') x C*" x C™.

The fibres are isomorphic to Jacobian of smooth hyper-elliptic curve

Jac(C’) extended by a multiplicative group (C*", x) and an additive group
(C™ +).

The solutions should look like functions of theta function plus something

else no-periodic.
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