Algebraic and geometrical description of the fibers of the Mumford system

Yasmine Fittouhi

Yasmine.Fittouhi@math.univ-poitiers.fr

$$
\text { July 30, } 2017
$$

The purpose

The main objectif of this talk is to understand the behave of vectors fields that rose from the study of Mumford systems.

The purpose

The main objectif of this talk is to understand the behave of vectors fields that rose from the study of Mumford systems.

To be able to to have an explicit solutions of the system Mumford.

The purpose

The main objectif of this talk is to understand the behave of vectors fields that rose from the study of Mumford systems.

To be able to to have an explicit solutions of the system Mumford.
We will use the moto of Julius Caesar:
"Divide and rule" ("divide ut regnes").

Overview

(1) What is Mumford System?
(2) Fibers
(3) Stratification
(4) Geometrico-algebric description of of the fibres

What is Mumford System?

To define Mumford system of order g, we need to define three object:

What is Mumford System?

To define Mumford system of order g, we need to define three object:

- Phase space,

What is Mumford System?

To define Mumford system of order g, we need to define three object:

- Phase space,
- Family of vectors fields (Poisson structure),

What is Mumford System?

To define Mumford system of order g, we need to define three object:

- Phase space,
- Family of vectors fields (Poisson structure),
- Momentum map.

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated.

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated. The phase space M_{g} is defined as follow ${ }^{1}$:
$M_{g}:=\left\{\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{2,2}(\mathbb{C}[x])\right.$

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated. The phase space M_{g} is defined as follow ${ }^{1}$:

$$
\begin{aligned}
M_{g}:= & \left\{\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \in M_{2,2}(\mathbb{C}[x])\right. \text { such that } \\
& u(x)=x^{g}+u_{g-1} x^{g-1}+u_{g-2} x^{g-2}+\cdots+u_{0}
\end{aligned}
$$

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated. The phase space M_{g} is defined as follow ${ }^{1}$:

$$
\begin{aligned}
M_{g}:= & \left\{\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \in M_{2,2}(\mathbb{C}[x])\right. \text { such that } \\
& u(x)=x^{g}+u_{g-1} x^{g-1}+u_{g-2} x^{g-2}+\cdots+u_{0}, \\
& v(x)=v_{g-1} x^{g-1}+v_{g-2} x^{g-2}+\cdots+v_{0},
\end{aligned}
$$

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated. The phase space M_{g} is defined as follow ${ }^{1}$:
$M_{g}:=\left\{\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{2,2}(\mathbb{C}[x])\right.$ such that

$$
\left.\begin{array}{rl}
u(x) & =x^{g}+u_{g-1} x^{g-1}+u_{g-2} x^{g-2}+\cdots+u_{0}, \\
v(x) & =v_{g-1} x^{g-1}+v_{g-2} x^{g-2}+\cdots+v_{0}, \\
w(x) & =x^{g+1}+w_{g} x^{g}+w_{g-1} x^{g-1}+\cdots+w_{0},
\end{array}\right\}
$$

Phase space

We fix an integer $g>1$. We work on the field \mathbb{C}
Mumford system of order g progress on complex affine space named M_{g} with $u_{0}, \ldots, u_{g-1}, v_{0}, \ldots, v_{g-1}, w_{0}, \ldots, w_{g}$ its affine coordinated. The phase space M_{g} is defined as follow ${ }^{1}$:

$$
\left.\begin{array}{rl}
M_{g}:= & \left\{\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \in M_{2,2}(\mathbb{C}[x])\right. \text { such that } \\
& u(x)=x^{g}+u_{g-1} x^{g-1}+u_{g-2} x^{g-2}+\cdots+u_{0}, \\
& v(x)=v_{g-1} x^{g-1}+v_{g-2} x^{g-2}+\cdots+v_{0}, \\
& w(x)=x^{g+1}+w_{g} x^{g}+w_{g-1} x^{g-1}+\cdots+w_{0},
\end{array}\right\} \simeq \mathbb{C}^{3 g+1} .
$$

Poisson structure

How to define Poisson structure?

Poisson structure

How to define Poisson structure?
If we want to define the bracket $\left\{u_{i}, u_{j}\right\}$ for $0 \leq i, j \leq g-1$

Poisson structure

How to define Poisson structure?
If we want to define the bracket $\left\{u_{i}, u_{j}\right\}$ for $0 \leq i, j \leq g-1$

$$
\begin{aligned}
& \{u(x), u(y)\}=\left\{x^{g}+u_{g-1} x^{g-1}+\cdots+u_{0}, y^{g}+u_{g-1} y^{g-1}+\cdots+u_{0}\right\} \\
& \{u(x), u(y)\}=\sum_{i, j=0}^{g-1}\left\{u_{i}, u_{j}\right\} x^{i} y^{j}
\end{aligned}
$$

Poisson structure

Definition

The Poisson structures on the space M_{g} are codified by these equations

$$
\begin{align*}
\{u(x), u(y)\} & =\{v(x), v(y)\}=0 \\
\{u(x), v(y)\} & =\frac{u(x)-u(y)}{x-y} \\
\{u(x), w(y)\} & =-2 \frac{v(x)-v(y)}{x-y} \tag{1}\\
\{v(x), w(y)\} & =\frac{w(x)-w(y)}{x-y}-u(x), \\
\{w(x), w(y)\} & =2(v(x)-v(y)) .
\end{align*}
$$

The equations (0.1) enable us to know the Poisson bracket for the coordinates functions $u_{g-1}, \ldots, u_{0}, v_{g-1}, \ldots, v_{0}, w_{g}, \ldots, w_{0}$.

Momentum map

Momentum map

Let's note by H_{g} the affine space of dimension $2 g+1$ define by

$$
H_{g}=\left\{x^{2 g+1}+a_{2 g} x^{2 g}+\cdots+a_{0} \mid\left(a_{2 g}, \ldots, a_{0}\right) \in \mathbb{C}^{2 g+1}\right\} .
$$

Momentum map

Let's note by H_{g} the affine space of dimension $2 g+1$ define by

$$
H_{g}=\left\{x^{2 g+1}+a_{2 g} x^{2 g}+\cdots+a_{0} \mid\left(a_{2 g}, \ldots, a_{0}\right) \in \mathbb{C}^{2 g+1}\right\} .
$$

The momentum map is noted \mathbf{H} is define from M_{g} to H_{g} :
H:

$$
A(x)=\left(\begin{array}{cc}
M_{g} & \\
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \quad \longrightarrow \quad H_{g} .
$$

- The composantes of \mathbf{H} defines $2 g+1$ polynomials functions of M_{g} denoted by $h_{0}, \ldots, h_{2 g+1}$ defined by,

$$
\begin{equation*}
\mathbf{H}(A(x))=\sum_{i=0}^{2 g+1} h_{i}(A(x)) x^{i} \tag{2}
\end{equation*}
$$

- The composantes of \mathbf{H} defines $2 g+1$ polynomials functions of M_{g} denoted by $h_{0}, \ldots, h_{2 g+1}$ defined by,

$$
\begin{equation*}
\mathbf{H}(A(x))=\sum_{i=0}^{2 g+1} h_{i}(A(x)) x^{i} \tag{2}
\end{equation*}
$$

- For $y \in \mathbb{C}$, denoted by $\left(\mathbf{H}_{y}\right)_{y \in \mathbb{C}}$ polynomials functions defined by

$$
\begin{aligned}
\mathbf{H}_{y}: & M_{g} \\
A(x) & \longmapsto \mathbb{C} \\
& \left.\longmapsto \mathbf{H}(A(x))\right|_{x=y}=-\operatorname{det}(A(y)) .
\end{aligned}
$$

Family of vectors fields

The two families of polynomials functions $\left(h_{i}\right)_{i=0, \ldots, 2 g}$ and $\left(\mathbf{H}_{y}\right)_{y \in \mathbb{C}}$ enable us to define a family of hamiltonian vectors fields.

We will denote the hamiltonians vectors fields:

Family of vectors fields

The two families of polynomials functions $\left(h_{i}\right)_{i=0, \ldots, 2 g}$ and $\left(\mathbf{H}_{y}\right)_{y \in \mathbb{C}}$ enable us to define a family of hamiltonian vectors fields.

We will denote the hamiltonians vectors fields:

- $D_{i}=\left\{\cdot, h_{i}\right\}$ for each $i=0, \ldots, 2 g$,

Family of vectors fields

The two families of polynomials functions $\left(h_{i}\right)_{i=0, \ldots, 2 g}$ and $\left(\mathbf{H}_{y}\right)_{y \in \mathbb{C}}$ enable us to define a family of hamiltonian vectors fields.

We will denote the hamiltonians vectors fields:

- $D_{i}=\left\{\cdot, h_{i}\right\}$ for each $i=0, \ldots, 2 g$,
- $D_{y}=\left\{\cdot, \mathbf{H}_{y}\right\}$ for $y \in \mathbb{C}$,

Proposition

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}$. For each $y \in \mathbb{C}$ and $0 \leqslant i \leqslant 2 g$ the vecteurs fields D_{y} at the point $A(x)$ is define by the equation :

$$
\left.D_{y}\right|_{A(x)}=\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right]
$$

Proposition

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}$. For each $y \in \mathbb{C}$ and $0 \leqslant i \leqslant 2 g$ the vecteurs fields D_{y} at the point $A(x)$ is define by the equation :

$$
\left.D_{y}\right|_{A(x)}=\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right], \text { Lax equation. }
$$

Proposition

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}$. For each $y \in \mathbb{C}$ and $0 \leqslant i \leqslant 2 g$ the vecteurs fields D_{y} at the point $A(x)$ is define by the equation :

$$
\left.D_{y}\right|_{A(x)}=\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right], \text { Lax equation. }
$$

Since $h_{i}=\operatorname{Res}_{x=0}\left(\frac{\mathbf{H}(x)}{x^{i+1}}\right)$

Proposition

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}$. For each $y \in \mathbb{C}$ and $0 \leqslant i \leqslant 2 g$ the vecteurs fields D_{y} at the point $A(x)$ is define by the equation :

$$
\left.D_{y}\right|_{A(x)}=\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right], \text { Lax equation. }
$$

Since $h_{i}=\operatorname{Res}_{x=0}\left(\frac{\mathbf{H}(x)}{x^{i+1}}\right)$ then

$$
\left.D_{i}\right|_{A(x)}=\left[A(x),\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}
0 & 0 \tag{3}\\
u_{i} & 0
\end{array}\right)\right]
$$

where $\left[\frac{A(x)}{x^{i+1}}\right]_{+}$is the polynomial part.

Remarks

- We note, from the equation (3), we have $\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}0 & 0 \\ u_{i} & 0\end{array}\right)=0$ for all $i \geqslant g$, therefore the functions $h_{g}, \ldots, h_{2 g}$ are Casimir functions for the Poisson structure $\{\cdot, \cdot\}$.

Remarks

- We note, from the equation (3), we have $\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}0 & 0 \\ u_{i} & 0\end{array}\right)=0$ for all $i \geqslant g$, therefore the functions $h_{g}, \ldots, h_{2 g}$ are Casimir functions for the Poisson structure $\{\cdot, \cdot\}$.
- For $y \in \mathbb{C}$. The hamiltonian D_{y} is $D_{y}=\sum_{i=0}^{g-1} y^{i} D_{i}$.

Remarks

- We note, from the equation (3),
we have $\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}0 & 0 \\ u_{i} & 0\end{array}\right)=0$ for all $i \geqslant g$, therefore the functions $h_{g}, \ldots, h_{2 g}$ are Casimir functions for the Poisson structure $\{\cdot, \cdot\}$.
- For $y \in \mathbb{C}$. The hamiltonian D_{y} is $D_{y}=\sum_{i=0}^{g-1} y^{i} D_{i}$.

By definition, $\mathbf{H}_{y}(A(x))=\left.\mathbf{H}(A(x))\right|_{x=y}$, therefore $\mathbf{H}_{y}=\sum_{i=0}^{2 g+1} y^{i} h_{i}$, we get

$$
\left\{\cdot, \mathbf{H}_{y}\right\}=\sum_{i=0}^{2 g} y^{i}\left\{\cdot, h_{i}\right\}
$$

Remarks

- We note, from the equation (3),
we have $\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}0 & 0 \\ u_{i} & 0\end{array}\right)=0$ for all $i \geqslant g$, therefore the functions $h_{g}, \ldots, h_{2 g}$ are Casimir functions for the Poisson structure $\{\cdot, \cdot\}$.
- For $y \in \mathbb{C}$. The hamiltonian D_{y} is $D_{y}=\sum_{i=0}^{g-1} y^{i} D_{i}$.

By definition, $\mathbf{H}_{y}(A(x))=\left.\mathbf{H}(A(x))\right|_{x=y}$, therefore $\mathbf{H}_{y}=\sum_{i=0}^{2 g+1} y^{i} h_{i}$, we get

$$
\left\{\cdot, \mathbf{H}_{y}\right\}=\sum_{i=0}^{2 g} y^{i}\left\{\cdot, h_{i}\right\}=\sum_{i=0}^{g-1} y^{i}\left\{\cdot, h_{i}\right\},
$$

Remarks

- We note, from the equation (3),
we have $\left[\frac{A(x)}{x^{i+1}}\right]_{+}-\left(\begin{array}{cc}0 & 0 \\ u_{i} & 0\end{array}\right)=0$ for all $i \geqslant g$, therefore the functions $h_{g}, \ldots, h_{2 g}$ are Casimir functions for the Poisson structure $\{\cdot, \cdot\}$.
- For $y \in \mathbb{C}$. The hamiltonian D_{y} is $D_{y}=\sum_{i=0}^{g-1} y^{i} D_{i}$.

By definition, $\mathbf{H}_{y}(A(x))=\left.\mathbf{H}(A(x))\right|_{x=y}$, therefore $\mathbf{H}_{y}=\sum_{i=0}^{2 g+1} y^{i} h_{i}$, we get

$$
\left\{\cdot, \mathbf{H}_{y}\right\}=\sum_{i=0}^{2 g} y^{i}\left\{\cdot, h_{i}\right\}=\sum_{i=0}^{g-1} y^{i}\left\{\cdot, h_{i}\right\}
$$

thus

$$
D_{y}=\sum_{i=0}^{g-1} y^{i} D_{i}
$$

Remarks

- The g functions h_{0}, \ldots, h_{g-1} are in involution,

$$
\left\{h_{i}, h_{j}\right\}=0 \text { for } 0 \leq i, j \leq g-1
$$

Remarks

- The g functions h_{0}, \ldots, h_{g-1} are in involution,

$$
\left\{h_{i}, h_{j}\right\}=0 \text { for } 0 \leq i, j \leq g-1
$$

- The space

$$
\mathcal{U}=\left\{A \in M_{g} \text { such that }\left.\left.D_{0}\right|_{A} \wedge \cdots \wedge D_{g-1}\right|_{A} \neq 0\right\}
$$

is not empty, and it is a Zariski an open set dense in M_{g}.

Proposition

The system $\left(M_{g},\{\cdot, \cdot\}, \mathbf{H}\right)$ is integrable in sens of Liouville of rank g. This system is named Mumford system of order g.

Fibers

Fibers

Momentum map is

$$
\begin{array}{cccc}
\mathbf{H}: & M_{g} & \longrightarrow & H_{g} \\
& A(x) & \longmapsto & -\operatorname{det}(A(x)) .
\end{array}
$$

Let $h \in H_{g}$. We denote by $M_{g}(h)=\mathbf{H}^{-1}(h)$ the fibre above the polynomial h.

Fibers

Momentum map is

$$
\begin{array}{cccc}
\mathbf{H}: \quad M_{g} & \longrightarrow & H_{g} \\
& A(x) & \longmapsto & -\operatorname{det}(A(x)) .
\end{array}
$$

Let $h \in H_{g}$. We denote by $M_{g}(h)=\mathbf{H}^{-1}(h)$ the fibre above the polynomial h. We distinguish two case

- $\Delta(h) \neq 0$,

Fibers

Momentum map is

$$
\begin{array}{cccc}
\mathbf{H}: \quad M_{g} & \longrightarrow & H_{g} \\
& A(x) & \longmapsto & -\operatorname{det}(A(x)) .
\end{array}
$$

Let $h \in H_{g}$. We denote by $M_{g}(h)=\mathbf{H}^{-1}(h)$ the fibre above the polynomial h. We distinguish two case

- $\Delta(h) \neq 0$,
- $\Delta(h)=0$.

Fibers

Momentum map is

$$
\begin{array}{cccc}
\mathbf{H}: \quad M_{g} & \longrightarrow & H_{g} \\
& A(x) & \longmapsto & -\operatorname{det}(A(x)) .
\end{array}
$$

Let $h \in H_{g}$. We denote by $M_{g}(h)=\mathbf{H}^{-1}(h)$ the fibre above the polynomial h. We distinguish two case

- $\Delta(h) \neq 0$,
- $\Delta(h)=0$.

When

$$
\Delta(h) \neq 0 \Longrightarrow M_{g}(h) \sim \operatorname{Jac}(C)-\Theta,
$$

where C is curve with genus g.
Since $\operatorname{Jac}(C)$ is isomorphic to a torus, it was natural to find the solution as theta function since it has a periodicity.

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}}$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right)
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A}
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A} \stackrel{\text { evaluate for } y=0}{\Longrightarrow} D_{y=0}\right|_{A}=\left.D_{0}\right|_{A},
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A} \stackrel{\text { evaluate for } y=0}{\Longrightarrow} D_{y=0}\right|_{A}=\left.D_{0}\right|_{A},
$$

According to Lax equation

$$
\left.D_{y}\right|_{A}=\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right]
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A} \stackrel{\text { evaluate for }}{\Longrightarrow}{ }^{y=0} D_{y=0}\right|_{A}=\left.D_{0}\right|_{A},
$$

According to Lax equation

$$
\left.D_{y}\right|_{A}=\left.\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right] \stackrel{\text { evaluate for } y=0}{\Longrightarrow} D_{y=0}\right|_{A}=0,
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A} \stackrel{\text { evaluate for }}{\Longrightarrow}{ }^{y=0} D_{y=0}\right|_{A}=\left.D_{0}\right|_{A},
$$

According to Lax equation

$$
\begin{aligned}
\left.D_{y}\right|_{A}= & {\left.\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right] \stackrel{\text { evaluate for } y=0}{\Longrightarrow} D_{y=0}\right|_{A}=0, } \\
& \Longrightarrow 0=\left.D_{0}\right|_{A}
\end{aligned}
$$

Example

Let $h \in H_{g}$ such that $h(x)=x^{2} \underbrace{h^{\prime}(x)}_{\in H_{g-1}} \Longrightarrow \Delta(h)=0$.
There existe a matrix $A(x) \in M_{g}(h)$

$$
A(x)=\left(\begin{array}{cc}
x v^{\prime}(x) & x u^{\prime}(x) \\
v(x) & u(x) \\
x w^{\prime}(x) & -x v^{\prime}(x) \\
w(x) & -v(x)
\end{array}\right) \Longrightarrow \operatorname{deg} \operatorname{GCD}(u, v, w) \neq 0 .
$$

(A is not a regular matrix).
Recall

$$
\left.D_{y}\right|_{A}=\left.\left.\sum_{i=0}^{g-1} y^{i} D_{i}\right|_{A} \stackrel{\text { evaluate for }}{\Longrightarrow}{ }^{y=0} D_{y=0}\right|_{A}=\left.D_{0}\right|_{A},
$$

According to Lax equation

$$
\begin{gathered}
\left.D_{y}\right|_{A}=\left.\left[A(x),-\frac{A(y)}{x-y}-\left(\begin{array}{cc}
0 & 0 \\
u(y) & 0
\end{array}\right)\right] \stackrel{\text { evaluate for } y=0}{\Longrightarrow} D_{y=0}\right|_{A}=0, \\
\Longrightarrow 0=\left.D_{0}\right|_{A} \Longrightarrow \operatorname{dim}<\left.D_{g-1}\right|_{A}, \cdots,\left.D_{0}\right|_{A}><g
\end{gathered}
$$

conclude

- If $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$ and

$$
\operatorname{GCD}(u, v, w)=Q
$$

conclude

- If $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$ and

$$
\operatorname{GCD}(u, v, w)=Q \Longrightarrow Q^{2} \text { divided } h
$$

conclude

- If $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$ and

$$
\operatorname{GCD}(u, v, w)=Q \Longrightarrow Q^{2} \text { divided } h
$$

Theorem

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$

conclude

- If $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$ and

$$
\operatorname{GCD}(u, v, w)=Q \Longrightarrow Q^{2} \text { divided } h
$$

Theorem

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$
$\operatorname{deg}(\operatorname{GCD}(u, v, w)=i) \Longleftrightarrow$

conclude

- If $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$ and

$$
\operatorname{GCD}(u, v, w)=Q \Longrightarrow Q^{2} \text { divided } h
$$

Theorem

Let $A(x)=\left(\begin{array}{cc}v(x) & u(x) \\ w(x) & -v(x)\end{array}\right) \in M_{g}(h)$
$\operatorname{deg}(\operatorname{GCD}(u, v, w)=i) \Longleftrightarrow \operatorname{dim}<\left.D_{g-1}\right|_{A}, \cdots,\left.D_{0}\right|_{A}>=g-i$

Stratification

Stratification

Definition

Let (I, \leqslant) a partially ordered set. Stratification of affine variety V, is a partition of V by a family $\left(S_{i}\right)_{i \in I}$ of quasi-affines variety such that: For each $i \in I$, the Zariski closure $\overline{S_{i}}$ of S_{i} is

$$
\overline{S_{i}}=\bigsqcup_{j \leqslant i} S_{j}, \text { (disjoint union). }
$$

The sets S_{i} are called stratum.

Definition
 - Let

Definition

- Let

$$
\mathbb{C}[x]_{h}=\left\{\text { monic polynomial } Q \in \mathbb{C}[x] \text { such that } \frac{h(x)}{Q^{2}(x)} \in \mathbb{C}[x]\right\}
$$

Definition

- Let

$$
\mathbb{C}[x]_{h}=\left\{\text { monic polynomial } Q \in \mathbb{C}[x] \text { such that } \frac{h(x)}{Q^{2}(x)} \in \mathbb{C}[x]\right\}
$$

The set $\left(\mathbb{C}[x]_{h}, \mid\right)$ is a partially ordered set.

Definition

- Let

$$
\mathbb{C}[x]_{h}=\left\{\text { monic polynomial } Q \in \mathbb{C}[x] \text { such that } \frac{h(x)}{Q^{2}(x)} \in \mathbb{C}[x]\right\} .
$$

The set $\left(\mathbb{C}[x]_{h}, \mid\right)$ is a partially ordered set.

- Let $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$.

Definition

- Let

$$
\mathbb{C}[x]_{h}=\left\{\text { monic polynomial } Q \in \mathbb{C}[x] \text { such that } \frac{h(x)}{Q^{2}(x)} \in \mathbb{C}[x]\right\}
$$

The set $\left(\mathbb{C}[x]_{h}, \mid\right)$ is a partially ordered set.

- Let $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$.

We denote by

$$
\begin{gathered}
M_{g, Q}(h)=\left\{A(x)=\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \in M_{g}(h)\right. \text { such that } \\
\operatorname{GCD}(u, v, w)=Q\} .
\end{gathered}
$$

Definition

- Let

$$
\mathbb{C}[x]_{h}=\left\{\text { monic polynomial } Q \in \mathbb{C}[x] \text { such that } \frac{h(x)}{Q^{2}(x)} \in \mathbb{C}[x]\right\}
$$

The set $\left(\mathbb{C}[x]_{h}, \mid\right)$ is a partially ordered set.

- Let $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$.

We denote by

$$
\begin{gathered}
M_{g, Q}(h)=\left\{A(x)=\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) \in M_{g}(h)\right. \text { such that } \\
\operatorname{GCD}(u, v, w)=Q\} .
\end{gathered}
$$

Remark, If

$$
A(x) \in M_{g, Q}(h) \Longrightarrow \operatorname{dim}<\left.D_{g-1}\right|_{A}, \cdots,\left.D_{0}\right|_{A}>=g-\operatorname{deg}(Q)=g-j
$$

Theorem

The family $\left(M_{g, Q}(h)\right)_{Q \in \mathbb{C}[x]}$ is stratification.

Relation between Any stratum and Mumford system of lower degree

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right)
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{array}{l}
\operatorname{deg}\left(u_{Q}\right)=i \\
\end{array}\right.
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{array}{cl}
\operatorname{deg}\left(u_{Q}\right) & =i \\
\operatorname{deg}\left(v_{Q}\right) & \leq i-1
\end{array}\right.
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{aligned}
\operatorname{deg}\left(u_{Q}\right) & =i \\
\operatorname{deg}\left(v_{Q}\right) & \leq i-1 \\
\operatorname{deg}\left(w_{Q}\right) & =i+1
\end{aligned}\right.
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{aligned}
\operatorname{deg}\left(u_{Q}\right) & =i \\
\operatorname{deg}\left(v_{Q}\right) & \leq i-1 \\
\operatorname{deg}\left(w_{Q}\right) & =i+1
\end{aligned}\right.
$$

$$
\mathbf{H}\left(A_{Q}\right)=-\operatorname{det}\left(A_{Q}\right)=\underbrace{v_{Q}^{2}+u_{Q} v_{Q}}_{h_{Q}} \text { with } \operatorname{deg}\left(h_{Q}\right)=2 i+1
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
\begin{gathered}
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{aligned}
\operatorname{deg}\left(u_{Q}\right) & =i, \\
\operatorname{deg}\left(v_{Q}\right) & \leq i-1, \\
\operatorname{deg}\left(w_{Q}\right) & =i+1 .
\end{aligned}\right. \\
\mathbf{H}\left(A_{Q}\right)=-\operatorname{det}\left(A_{Q}\right)=\underbrace{v_{Q}^{2}+u_{Q} v_{Q}}_{h_{Q}} \text { with } \operatorname{deg}\left(h_{Q}\right)=2 i+1 \\
\text { since } \operatorname{GCD}\left(u_{Q}, v_{Q}, w_{Q}\right)=1
\end{gathered}
$$

Relation between Any stratum and Mumford system of lower degree

Let $h \in H_{g}$ and $Q \in \mathbb{C}[x]_{h}$ with $\operatorname{deg}(Q)=j$, note $i=g-j$
Let

$$
A(x) \in M_{g, Q}(h) \Longrightarrow A(x)=Q(x) A_{Q}(x)
$$

Where

$$
A_{Q}(x)=\left(\begin{array}{cc}
v_{Q}(x) & u_{Q}(x) \\
w_{Q}(x) & -v_{Q}(x)
\end{array}\right) \text { with }\left\{\begin{aligned}
\operatorname{deg}\left(u_{Q}\right) & =i \\
\operatorname{deg}\left(v_{Q}\right) & \leq i-1 \\
\operatorname{deg}\left(w_{Q}\right) & =i+1
\end{aligned}\right.
$$

$$
\mathbf{H}\left(A_{Q}\right)=-\operatorname{det}\left(A_{Q}\right)=\underbrace{v_{Q}^{2}+u_{Q} v_{Q}}_{h_{Q}} \text { with } \operatorname{deg}\left(h_{Q}\right)=2 i+1
$$

$$
\text { since } \operatorname{GCD}\left(u_{Q}, v_{Q}, w_{Q}\right)=1
$$

$$
A_{Q}(x) \in M_{i, 1}\left(h_{Q}\right)
$$

Relation between any stratum $M_{g, Q}(h)$ and stratum Mumford system of lower degree

$$
M_{g, Q}(h) \stackrel{\sim}{\longleftrightarrow} M_{i, 1}\left(h_{Q}\right)
$$

Relation between any stratum $M_{g, Q}(h)$ and stratum Mumford system of lower degree

$$
\begin{array}{ccc}
M_{g, Q}(h) & \stackrel{\sim}{\longleftrightarrow} & M_{i, 1}\left(h_{Q}\right) \\
Q(x) A_{Q}(x) & \stackrel{Q}{\longleftrightarrow} & A_{Q}(x)
\end{array}
$$

Relation between any stratum $M_{g, Q}(h)$ and stratum Mumford system of lower degree

$$
\begin{array}{ccc}
M_{g, Q}(h) & \stackrel{\sim}{\longleftrightarrow} & M_{i, 1}\left(h_{Q}\right) \\
Q(x) A_{Q}(x) & \stackrel{Q}{\longleftrightarrow} & A_{Q}(x)
\end{array}
$$

Any stratum of the stratification $\left(M_{g, Q}(h)\right)_{Q \in \mathbb{C}_{h}[x]}$ is isomorphic to a stratum of an Mumford system of lower degree of the form $\left(M_{g-\operatorname{deg}(Q), 1}\left(\frac{h}{Q^{2}}\right)\right)_{Q \in \mathbb{C}_{h}[x]}$.

Geometrico-algebric description of of the fibres

Geometrico-algebric description of of the fibres

Let $h \in H_{g}$.
Let us denote h monic polynomial such that $h(x)=P^{2}(x) h^{\prime}(x)$, with the discriminant of h^{\prime} is non zero and $\operatorname{deg} h^{\prime}=2 g^{\prime}+1$.

Geometrico-algebric description of of the fibres

Let $h \in H_{g}$.
Let us denote h monic polynomial such that $h(x)=P^{2}(x) h^{\prime}(x)$, with the discriminant of h^{\prime} is non zero and $\operatorname{deg} h^{\prime}=2 g^{\prime}+1$.
The factorization of the polynomial of P is the following:

$$
\begin{equation*}
P(x)=\prod_{i=1}^{k}\left(x-a_{i}\right)^{\ell_{i}} \tag{5}
\end{equation*}
$$

The roots $a_{i} \in \mathbb{C}$ of $P(x)$ are all distinct,

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$ and let C^{\prime} be the normalize curve of C, this curve is smooth hyper-elliptic curve of the affine equation $z^{2}=h^{\prime}(x)$. The arithmetic genus of C is g and the arithmetic genus of C^{\prime} si g^{\prime}.

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$ and let C^{\prime} be the normalize curve of C, this curve is smooth hyper-elliptic curve of the affine equation $z^{2}=h^{\prime}(x)$. The arithmetic genus of C is g and the arithmetic genus of C^{\prime} si g^{\prime}.Here is the morphism ϕ between C^{\prime} and C :

$$
\varphi: \begin{array}{ccc}
C^{\prime} & \longrightarrow & C \\
(x, z) & \longmapsto & (x, P(x) z) .
\end{array}
$$

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$ and let C^{\prime} be the normalize curve of C, this curve is smooth hyper-elliptic curve of the affine equation $z^{2}=h^{\prime}(x)$. The arithmetic genus of C is g and the arithmetic genus of C^{\prime} si g^{\prime}.Here is the morphism ϕ between C^{\prime} and C :

$$
\varphi: \begin{array}{ccc}
C^{\prime} & \longrightarrow & C \\
(x, z) & \longmapsto & (x, P(x) z) .
\end{array}
$$

Let \mathfrak{m} a module of C^{\prime} :

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$ and let C^{\prime} be the normalize curve of C, this curve is smooth hyper-elliptic curve of the affine equation $z^{2}=h^{\prime}(x)$. The arithmetic genus of C is g and the arithmetic genus of C^{\prime} si g^{\prime}.Here is the morphism ϕ between C^{\prime} and C :

$$
\varphi: \begin{array}{ccc}
C^{\prime} & \longrightarrow & C \\
(x, z) & \longmapsto & (x, P(x) z) .
\end{array}
$$

Let \mathfrak{m} a module of C^{\prime} :

$$
\mathfrak{m}=\sum_{i=1}^{k} \ell_{i}\left(\left(a_{i}, b_{i}\right)+\left(a_{i},-b_{i}\right)\right)
$$

with $b_{i}^{2}=h^{\prime}\left(a_{i}\right)$ for $1 \leqslant i \leqslant k$.

Remark

- Any $A \in M_{g}(h)$ have the same characteristic polynomial $y^{2}-h(x)$,
- All matrixes $A \in M_{g}(h)$ have the same eigenvalue $y^{2}-h(x)=0$.
- The matrixes $A \in M_{g}(h)$ have not the same eigenvectors.

Let C be a singular hyper-elliptic curve of the affine equation $y^{2}=h(x)$ and let C^{\prime} be the normalize curve of C, this curve is smooth hyper-elliptic curve of the affine equation $z^{2}=h^{\prime}(x)$. The arithmetic genus of C is g and the arithmetic genus of C^{\prime} si g^{\prime}.Here is the morphism ϕ between C^{\prime} and C :

$$
\varphi: \begin{array}{ccc}
C^{\prime} & \longrightarrow & C \\
(x, z) & \longmapsto & (x, P(x) z) .
\end{array}
$$

Let \mathfrak{m} a module of C^{\prime} :

$$
\mathfrak{m}=\sum_{i=1}^{k} \ell_{i}\left(\left(a_{i}, b_{i}\right)+\left(a_{i},-b_{i}\right)\right),
$$

with $b_{i}^{2}=h^{\prime}\left(a_{i}\right)$ for $1 \leqslant i \leqslant k$.
The image by the morphism φ of support of the divisor \mathfrak{m} corresponds to the singulars points of the curve C^{\prime}.

We denote by Φ the map between $M_{g, 1}(h)$ and $\mathrm{Jac}_{\mathfrak{m}}\left(C^{\prime}\right)$ defines as follow:

We denote by Φ the map between $M_{g, 1}(h)$ and $\mathrm{Jac}_{\mathfrak{m}}\left(C^{\prime}\right)$ defines as follow:

$$
\begin{aligned}
\Phi: & M_{g, 1}(h) \\
\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) & \longmapsto \\
& \longmapsto \theta\left(\left(\frac{\prod_{i=1}^{k}\left(x-a_{i}\right)^{\ell_{i}+1}(P(x) z+v(x))}{u(x)}+1\right)_{+}\right),
\end{aligned}
$$

The map Φ is an isomorphism between $M_{g, 1}(h)$ and an set open of the jacobian $\mathrm{Jac}_{\mathfrak{m}}\left(C^{\prime}\right)$.

We denote by Φ the map between $M_{g, 1}(h)$ and $\mathrm{Jac}_{\mathfrak{m}}\left(C^{\prime}\right)$ defines as follow:

$$
\begin{aligned}
\Phi: \quad & \longrightarrow \\
M_{g, 1}(h) & \longrightarrow \\
\left(\begin{array}{cc}
v(x) & u(x) \\
w(x) & -v(x)
\end{array}\right) & \longmapsto \theta\left(\left(\frac{\prod_{i=1}^{k}\left(x-a_{i}\right)^{\ell_{i}+1}(P(x) z+v(x))}{u(x)}+1\right)_{+}\right),
\end{aligned}
$$

The map Φ is an isomorphism between $M_{g, 1}(h)$ and an set open of the jacobian $\mathrm{Jac}_{\mathfrak{m}}\left(C^{\prime}\right)$.

Mumford system is an Algebraic complete integrability (a.c.i).

Solutions

Since

$$
\operatorname{Jac}\left(C^{\prime}\right) \times \mathbb{C}^{* n} \times \mathbb{C}^{m}
$$

The fibres are isomorphic to Jacobian of smooth hyper-elliptic curve $\operatorname{Jac}\left(C^{\prime}\right)$ extended by a multiplicative group $\left(\mathbb{C}^{* n}, \times\right)$ and an additive group $\left(\mathbb{C}^{m},+\right.$).

Solutions

Since

$$
\operatorname{Jac}\left(C^{\prime}\right) \times \mathbb{C}^{* n} \times \mathbb{C}^{m}
$$

The fibres are isomorphic to Jacobian of smooth hyper-elliptic curve Jac $\left(C^{\prime}\right)$ extended by a multiplicative group $\left(\mathbb{C}^{* n}, \times\right)$ and an additive group $\left(\mathbb{C}^{m},+\right.$).

The solutions should look like functions of theta function plus something else no-periodic.

