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• Let Sn denote the symmetric group on n letters.

• Let k denote a field of characteristic p > 0.

• Representations of kSn are indexed by the of partitions of n, denoted Pn.

• We let Pn(h) ⊆ Pn denote the subset of partitions with at most h columns.

• For n ∈ N, consider the subcategory of representations whose simple
constituents are labelled by Pn(h).

• This subcategory is rich in structure and understandable for p � h.

• This is actually the chunk of kSn seen in Endk((kn)⊗r ).

• It is a highest weight category and is obtained from GLh via Ringel duality.

• Our main interest is in the graded decomposition numbers,

dλµ(t) =
∑
k∈Z

[S(λ) : D(µ)〈k〉]tk

for λ, µ ∈ Pn(h).
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• We embed Pn(h) into Eh = R{ε1, . . . , εh}, via the transpose map.

• For example

P19(4)→ E4 7→ 9ε1 + 5ε2 + 4ε3 + ε4

• This map is injective and its image is denoted E+
h (the dominant region).

• We equip E+
h with an alcove geometry of type Ah−1 ⊆ Âh−1.

• Andersen, Humphreys, Jantzen, Lusztig, Riche, Soergel, Williamson...
show that kSn-mod is controlled by this alcove geometry.

Question

Does this generalise to other complex reflection groups?
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• Andersen, Humphreys, Jantzen, Lusztig, Riche, Soergel, Williamson...
show that kSn-mod is controlled by this alcove geometry.

Question

Does this generalise to other complex reflection groups?

Complex reflection groups and their Hecke and Diagrammatic Cherednik algebras



Decomposition numbers of reflection groups The super-strong linkage principle for symmetric groups An example The diagrammatic Cherednik algebras

Section 2

The super-strong linkage principle for symmetric groups
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Sneak peak.......

The super-strong linkage principle (B.–Cox)

For every k ∈ Z we have that

[S(λ) : D(µ)〈k〉] ≤ |{s | s ∈ Path+(λ, tµ),deg(s) = k}|

for λ, µ ∈ Pn(h).

• New upper bounds for graded decomposition numbers of symmetric
groups in terms of dominant paths in our alcove geometry.

• This generalises to the cyclotomic Hecke algebras (i.e. those of type
G(`, 1, n) — the deformations of (Z/`Z) oSn).
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• We write λ ↑ µ if λ can be obtained from µ by a series of reflections
TOWARDS the origin.

• We say that λ, µ are strongly linked.

The strong linkage principle (Humphreys (see also Jantzen, Andersen))

Let λ, µ ∈ Pn(h) and p > h. If dλµ(t) 6= 0 then λ ↑ µ.

}

µµµµµµµ

}
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• Draw a path, tµ, from the origin to µ.

• For λ ∈ E+
h we let Path(λ, tµ) be the set of all paths which can be

obtained by folding up the path tµ so that it terminates at λ.

• Path(λ, tµ) 6= ∅ if and only if λ ↑ µ.

}}
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• Draw a path, tµ, from the origin to µ.

• Let Path(λ, tµ) be the set of all paths which can be obtained by folding
up the path tµ so that it terminates at λ.

• Path(λ, tµ) 6= ∅ if and only if λ ↑ µ.

}}

• Let Path+(λ, tµ) ⊆ Path(λ, tµ) be the subset of all paths which never
leave the dominant region.
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Theorem (B.–Cox)

There is a quotient of the “diagrammatic Cherednik algebra” which possesses a
graded cellular basis

{Cst | s ∈ Path+
n (λ, tµ), t ∈ Path+

n (λ, tν), λ, µ, ν ∈ Pn(h)}.

We show that this quotient of the “diagrammatic Cherednik algebra” is Morita
equivalent to the relevant quotient of the symmetric group and hence...

Corollary (B.–Cox)

Let p > h. For every k ∈ Z we have that

[S(λ) : D(µ)〈k〉] ≤ |{s | s ∈ Path+(λ, tµ),deg(s) = k}|

for λ, µ ∈ Pn(h).
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n (λ, tν), λ, µ, ν ∈ Pn(h)}.

We show that this quotient of the “diagrammatic Cherednik algebra” is Morita
equivalent to the relevant quotient of the symmetric group and hence...

Corollary (B.–Cox)

Let p > h. For every k ∈ Z we have that

[S(λ) : D(µ)〈k〉] ≤ |{s | s ∈ Path+(λ, tµ),deg(s) = k}|

for λ, µ ∈ Pn(h).
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• Let k be an arbitrary field and e = 6. For µ = (2, 112), there are only 4
dominant paths. These are the paths which terminate at the points

(2, 112) (22, 110) (32, 23, 12) (33, 22, 1)

}}

0
1

1

2

• We have the following bounds on decomposition numbers,

d(2,112),(2,112)(t) ≤ 1 d(22,110),(2,112)(t) ≤ t1

d(33,22,1),(2,112)(t) ≤ t2 d(32,23,12),(2,112)(t) ≤ t1.

and dλµ(t) = 0 otherwise. These bounds are sharp!

Complex reflection groups and their Hecke and Diagrammatic Cherednik algebras



Decomposition numbers of reflection groups The super-strong linkage principle for symmetric groups An example The diagrammatic Cherednik algebras

• Let k be an arbitrary field and e = 6. For µ = (2, 112), there are only 4
dominant paths. These are the paths which terminate at the points

(2, 112) (22, 110) (32, 23, 12) (33, 22, 1)

}}

0
1

1

2

• We have the following bounds on decomposition numbers,

d(2,112),(2,112)(t) ≤ 1 d(22,110),(2,112)(t) ≤ t1

d(33,22,1),(2,112)(t) ≤ t2 d(32,23,12),(2,112)(t) ≤ t1.

and dλµ(t) = 0 otherwise. These bounds are sharp!

Complex reflection groups and their Hecke and Diagrammatic Cherednik algebras



Decomposition numbers of reflection groups The super-strong linkage principle for symmetric groups An example The diagrammatic Cherednik algebras

Section 3

Decomposition numbers for cyclotomic quiver Hecke algebras
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Let e, n ∈ N and σ ∈ Z` and k denote an arbitrary ring.

The quiver Hecke algebra, Hk
n (σ), is generated by the idempotents

e(i) =

i1 i2 i3 i4 in−1 in

for i ∈ Z/eZ, along with the elements

ψr =

yr =

for 1 ≤ r < n subject to deformed braid and reflection relations (and some
extra Jucys–Murphy relations) and the cyclotomic relation

e(i)y
]{σk |σk≡i1 mod e, 1≤k≤`}
1 = 0

This depends ONLY on the reduction modulo e of σ ∈ Z`, denoted
s ∈ (Z/eZ)`. Therefore we denote the algebra by Hk

n (s).
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Section 4

Multipartition combinatorics and cellularity
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The combinatorics of Z/`Z oSn is controlled by P`n = {`-multipartitions of n}.

(
| |

)
∈ P3

19

is a 3-multipartition of 19. Given s ∈ (Z/eZ)`, we can “charge” these
partitions. If e = 5 and σ = (0, 3, 1)(

0 1 2 3 4

4 0 1

3

|
3 4

2 3

1

| 1 2

0 1

)
Given σ ∈ Z` we can “weight” these multipartitions. If σ = (0, 3, 1) and
σ = (0, 33, 46)
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Each weighting, σ ∈ Z`, gives a graphically defined:

• σ-ordering on the set of boxes given by their x-coordinates;

• and hence a σ-ordering on P`n ;

• a σ-grading on the set of standard tableaux;

• a subset Σ ⊆ P`n which parameterises the simple Hn(s)-modules

{Dσ(λ) | λ ∈ Σ ⊆ P`n}.

Question

Can we explicitly construct these simple modules?

Question

Is the (graded) decomposition matrix uni-triangular with respect to the
σ-dominance order?
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Question

Do these different weightings, σ ∈ Z`, give rise to different (graded)
cellular structures on Hn(s)?

• Geck and Rouquier – “canonical basic sets” for type G(2, 1, n) over C.
• Geck – cellular bases over Z for types G(2, 1, n), G(2, 2, n) and other real

reflection groups.
• Geck and Jacon – “canonical basic sets” for type G(`, 1, n) over C.
• Clouveraki and Jacon – “canonical basic sets” for type G(`, p, n) over C.
• Chlouveraki, Gordon, Griffeth – explicit modules behind basic sets (no

bases) for type G(`, 1, n) over C.
• Bonnafe and Rouquier – conjectural construction for type G(`, 1, n) in

terms of Kazhdan–Lusztig theory and Calogero–Moser spaces.

Theorem (B., and implicit over a field by Webster)

The algebra HZ
n (s) of type G(`, 1, n) free as a Z-algebra with graded cellular

basis
{cσst | λ ∈ P

`
n , s, t ∈ Std(λ)}

with respect to the σ-dominance order on P`n and the σ-grading on standard
tableaux.
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Section 5

The graded decomposition matrices of Hecke and
diagrammatic Cherednik algebras
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• For each weighting, σ ∈ Z`, the set of simples

{Dσ(λ) | λ ∈ Σ ⊆ P`n}

can be constructed from the set of cell modules,

Sσ(λ) = {ct | t ∈ Std(λ)}

for λ ∈ P`n via the radical of a bilinear form.

• The simple modules for different weightings are isomorphic.

• The cell modules for different weightings are non-isomorphic but do have
the same composition factors.

• The (graded) decomposition matrices are uni-triangular over k a field.
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Section 6

Modular decomposition numbers of Ariki–Koike and
diagrammatic Cherednik algebras
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Question

Can we understand decomposition matrices of Hecke and diagrammatic
Cherednik algebras over arbitrary fields via Kazhdan–Lusztig theory?

• Over C, yes! (Rouquier–Shan–Varagnolo–Vasserot, Losev, Webster.)

• For ` = 1 and arbitrary k, no.

• To fix this, we restrict to
• the subcategory labelled by partitions with at most h columns
• fields of characteristic p � h

• What about higher levels?

• For arbitrary σ this is impossible (it includes the level 1 problem)

• But what about for a nice choice of weighting....
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• We let P`n(h) denote the set of multipartitions with at most h columns in
any given component.

• For example,

((32, 24, 15) | (25, 1) | (3, 2, 1) | (22)) ∈ P4
40(3)

• We let Q`,h,n(s) denote the “nice” quotient of Hn(s) by the 2-sided ideal

〈e(i) | i ∈ (Z/eZ)` and ik+1 = ik + 1 for 1 ≤ k ≤ h〉

• This ideal is a cell-ideal in Hn(s) for a certain nice choice of σ ∈ Z` (a
‘FLOTW’ weighting).

• The simple modules of Q`,h,n(s) are indexed by P`n(h).

• Therefore the (square) decomposition matrix of Q`,h,n(s) appears as a
submatrix of that of Hk

n (s).

• For example Q1,h,n(s) is the image of kSn in End((kn)⊗r ).
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• We want to show that the representation theory of Q`,h,n(s) is controlled
by an alcove geometry of type

Ah−1 × Ah−1 × · · · × Ah−1 ⊆ Â`h−1

for e > h`.

• If ` = 1 and h ∈ N this is the usual parabolic affine geometry which
controls the chunk of Sn corresponding to Pn(h) (seen earlier).

• If h = 1 and ` ∈ N this is the affine geometry which controls the
Kac–Moody algebra ĝl` over C.

• We embed P`n(h) into Eh = R{ε1, . . . , εh`}, via the transpose map.

• For example

P2
18(3)→ E6

 ,

 7→ 6ε1 + 4ε2 + 2ε3 + 3ε5 + 2ε6 + ε7
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for e > h`.

• If ` = 1 and h ∈ N this is the usual parabolic affine geometry which
controls the chunk of Sn corresponding to Pn(h) (seen earlier).

• If h = 1 and ` ∈ N this is the affine geometry which controls the
Kac–Moody algebra ĝl` over C.
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Examples of the geometries we see
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Section 7

Generic Behaviour and super-strong linkage
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We say that λ and µ are generic if they are “closer to each other than they are
to the walls of the dominant region”.

Take λ and consider all points µ such that λ ↑ µ.
The set of coloured triangles is “generic”.

}

λλ

Theorem (Generic Behaviour (B.–Cox))

For λ and µ generic points we have that

dimk(HomQ`,h,n(s)(S(µ),S(λ))) = t`(µ)−`(λ) + . . .

where the other terms are of strictly smaller degree.
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The set of coloured triangles is “generic”.

}

λλ

Theorem (Generic Behaviour (B.–Cox))

For λ and µ generic points we have that

dimk(HomQ`,h,n(s)(S(µ), S(λ))) = t`(µ)−`(λ) + . . .

where the other terms are of strictly smaller degree.
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Section 8

A conjecture for modular decomposition numbers
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Theorem (B.–Cox, B.–Cox–Speyer)

Over C, the graded decomposition numbers of Q`,h,n(s) are

dλµ(t) = nλµ

where nλµ is the associated parabolic (affine) Kazhdan–Lusztig polynomial.

Corollary (Martin–Woodcock conjecture, B.)

The decomposition matrix of the HC
n (s) has a square submatrix with entries

given by the non-parabolic Kazhdan Lusztig polynomials of type Âh−1.
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Complex reflection groups and their Hecke and Diagrammatic Cherednik algebras



Decomposition numbers of reflection groups The super-strong linkage principle for symmetric groups An example The diagrammatic Cherednik algebras

Conjecture (Generalized Lusztig-conjecture)

Let F be a field of characteristic p � h`. The decomposition numbers are

dλµ(t) = nλµ

for λ, µ ∈ P`n(h) in the “first p2-alcove”.

The conjecture is true for

• maximal finite parabolic orbits with k arbitrary;

• ` = 2 or 3, with e =∞ with k arbitrary (for all P`n);

• k = C is the complex field;

• ` = 1 and char(k) = p � h (Riche–Williamson).
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Section 9

An example
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• Let H13(q,Q1,Q2) be Hecke algebra of type B (a deformation of the group
of signed permutations of {1, . . . , 13}).

• Let q5 = 1 and Q1 = q and Q2 = q3. Let k be arbitrary.
• We embed the the bi-partitions ((2a, 1b), (1c)) ` 13 into E+

3 as follows.

edge of dominant region

}

α

β β′

γ γ′

δ

λ

σ

τ

ρ

µ

µ′

ν

ν′

π
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• Let H13(q,Q1,Q2) be Hecke algebra of type B (of signed permutations of
{1, . . . , 13}).
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α β β′ γ γ′ δ λ µ µ′ ν ν′ π ρ τ σ

α
β
β′

γ
M

γ′

δ

λ
µ
µ′

ν
t1M M

ν′

π

ρ 0 t2 t2 t 0 0 0 0 t 0 0 0 1
τ t2 t3 t t2 0 t 0 0 t2 0 t 0 t 1
σ t3 0 t2 t3 t t2 0 0 0 0 t2 t 0 t 1

where M records the (non-parabolic) Kazhdan–Lusztig polynomials of type A2.
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Section 10

The diagrammatic Cherednik algebras
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i1 i2 i3 i4 i5 i6 i7

7→

i1 i1 i3 i4 i5 i6 i7

s1 s2 s`

σ ∈ Z` the “weighting” gives the x-coordinates
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i1 i2 i3 i4 i5 i6 i7

7→

i1 i1 i3 i4 i5 i6 i7s1 s2 s`

σ ∈ Z` the “weighting” gives the x-coordinates

Complex reflection groups and their Hecke and Diagrammatic Cherednik algebras



Decomposition numbers of reflection groups The super-strong linkage principle for symmetric groups An example The diagrammatic Cherednik algebras

Given a weighting σ ∈ Z`, we have a diagrammatic Cherednik algebra An(σ)
spanned by all possible tubular diagrams:

i1 i4i3 i6i5 i7i2 i4s1 s2 s3

subject to the same relations.

For every σ ∈ Z` such that σ 7→ σ, the Hecke algebra, Hn(s), is a subalgebra of
An(σ).
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