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Classical statement

Let X be an orientable compact space.

Then there is an integer n
and an isomorphism of graded groups

H∗(X ;Z) ∼= Hn−∗(X ;Z)
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Why care?

• Computations: can halve the amount of homological computations
and make computational reasonings by symmetry

• Theoretical: can build wrong–way/umkehr maps used to make
transfer arguments

• Theoretical: starting point for surgery theory
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History

1890’s H. Poincaré
in terms of matching Betti numbers

1930’s E.Čech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes

1992 S. Costenoble & S. Waner
introduced equivariant Poincaré duality for finite groups

2001 J. Klein
introduced the dualising spectrum perspective on Poincaré
complexes

2000’s S. Costenoble & S. Waner, J.P. May & J. Sigurdsson
developed the theory of parametrised homotopy theory

2023 B. Cnossen (PhD thesis)
studied a “pre–equivariant Poincaré duality” situation he called
twisted ambidexterity
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Goal of project

To develop a theory of equivariant Poincaré duality for finite
groups to the extent of being able to relate and exploit the
relationships between the different fixed points in nontrivial ways.

7 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

Goal of project

To develop a theory of equivariant Poincaré duality for finite
groups to the extent of being able to relate and exploit the
relationships between the different fixed points in nontrivial ways.

7 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

1 Background

2 Nonequivariant theory review

3 Equivariant theory

4 Application: theorem of the single fixed point

8 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

Dictionary

Classical Modern

A ring R ⇝ A symmetric monoidal stable category C
H∗(X ;R),H∗(X ;R) ⇝ Fun(X , C)

Write r : X → ∗ for the unique map. We thus get an adjunction

Fun(X , C) C

r!

r∗

r∗

For ζ ∈ Fun(X ,D(Z)), we have

π∗(r!ζ) ∼= H∗(X ; ζ) and π−∗(r∗ζ) ∼= H∗(X ; ζ)
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Poincaré duality

Definition: Let X be a compact space and C a stably symmetric
monoidal category. A Spivak datum consists of a “dualising
spectrum” object DX ∈ Fun(X , C) and a “fundamental class”
c : 1C → r!DX in C.

Construction: Given a Spivak datum (DX , c), we may construct a
natural transformation

c ∩ − : r∗(−) −→ r!(DX ⊗−)

as follows:
Nat

(
r∗r∗−, id −

) r!(DX⊗−)−−−−−−→ Nat
(
r!(DX ⊗ r∗r∗−), r!(DX ⊗−)

)
≃ Nat

(
r!DX ⊗ r∗(−), r!(DX ⊗−)

)
c∗
−→ Nat

(
r∗(−), r!(DX ⊗−)

)
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Poincaré duality

Definition: A compact space X is said to be C–Poincaré duality if
the two conditions hold:

1 the object DX ∈ Fun(X , C) is invertible,
2 the map c ∩ − : r∗(−) → r!(DX ⊗−) is an equivalence.

Classical example: When C = Sp, it is just a property for a
compact space to be Sp–Poincaré duality. This turns out to agree
with Wall’s Poincaré complexes, using Spivak’s spherical fibration
as Klein’s dualising spectrum.

Remark: In fact, more generally, when C is a presentably
symmetric monoidal stable category, it is just a property for a
compact space to be C–Poincaré duality.
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G–categories

Definition: A G–category is an object in CatG := Fun(Oop
G ,Cat).

We use the underline notation C to denote an object in CatG . An
object in a G–category C is a morphism X : ∗ → C.

Example: For the group G = Cp, a G–category looks like the data

Cp/Cp Cp/e 7→ CCp CeCp
ResCp

e Cp

Remark: CatG has internal hom object Fun(C,D) ∈ CatG . An
object in Fun(C,D) contains the data of {ϕH : CH → DH}H≤G and
commutation data

CH DH

CK DK

φH

ResH
K ≡ ResH

K

φK

for every subgroup inclusion K ≤ H ≤ G .
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G–categories

Example: Write SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp for the G–category of genuine G–spectra, i.e.
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp = {SpH}H≤G where SpH := MackH(Sp).

An important adjunction in the theory is the following: let
s : ∗ ↪→ Oop

G be the fully faithful inclusion of the orbit G/G . This
gives rise to a Bousfield localisation

CatG Cat
s∗

s∗

Note that s∗(−) = (−)G evaluates the “genuine fixed point” and
the G–category s∗C has value C at G/G and ∗ elsewhere.

Definition: A G–space is an object in SG := Fun(Oop
G ,S). For

X ∈ SG , we write X e := X (G/e) ∈ Fun(BG ,S) for the underlying
space with G–action.
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G–Poincaré duality

Definition: Let X be a compact G–space and C a G–stably
symmetric monoidal category. A Spivak datum consists of a
“dualising spectrum” object DX ∈ Fun(X , C) and a “fundamental
class” map c : 1C → r!DX in C.

Definition: A compact G–space X is said to be C–Poincaré
duality if the two conditions hold:

1 the object DX ∈ Fun(X , C) is invertible,
2 the map c ∩ − : r∗(−) → r!(DX ⊗−) is an equivalence.

Examples: Smooth G–manifolds and tom Dieck’s generalised
homotopy representations are SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality.
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Main manoeuvres

Manoeuvre 1 (Poincaré basechange): Let X be C–Poincaré
duality and F : C → D a symmetric monoidal G–exact functor of
G–presentable stable categories. Then X is also D–Poincaré
duality.

Manoeuvre 2 (Poincaré isotropy): Let X be a compact G–space
and C a presentably symmetric monoidal stable category. Then X
is s∗C–Poincaré duality if and only if XG is C–Poincaré duality.

Corollary: If X is SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG–Poincaré duality, then XG is Sp–Poincaré
duality. This is obtained by upgrading the geometric fixed points
functor ΦG : SpG → Sp to a G–exact symmetric monoidal functor
Φ: SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp → s∗Sp.
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A theorem of Atiyah–Bott and Conner–Floyd

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be
an odd prime and G = Cpk . Let M a non–contractible, closed,
connected, oriented smooth G–manifold. Then the MG cannot just
be a point.

Remarks:
• Originally conjectured by Conner–Floyd in 1964,
• Proved first by Atiyah–Bott using a Lefschetz fixed points

theorem based on the Atiyah–Singer index theorem,
• Conner–Floyd subsequently gave another proof using bordism

theory,
• Both proofs are highly geometric.
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A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk .

Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space

satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds)

such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable.

Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

A generalisation

Theorem (HKK): Let p be an odd prime and G = Cpk . Let X be
a compact SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp–Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G–manifolds) such that the underlying space of X is
non–contractible, connected, and orientable. Then XG is not
contractible.

Remark: proof is purely homotopy–theoretic using the theory of
fundamental classes developed in the project.

19 / 22



Background Nonequivariant theory review Equivariant theory Application: theorem of the single fixed point

Quick review of the Tate construction

Recall that for E ∈ SpG , we have a fibre sequence in Sp

EhG −→ EhG −→ E tG(−→ ΣEhG)

Importantly, (−)tG kills objects of the form IndG
e F .

Construction: Let X ∈ SG . From this, there is a functorially
constructed “singular part” G–space X>1 which admits a map to
X . To set up notation, we write X>1 X ∗.ϵ

r>1

r

By homology covariant functoriality, for all ζ ∈ Fun(X , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp), we
have a map r>1

! ε∗ζ → r!ζ in SpG . One can show that this induces
an equivalence (

r>1
! ε∗ζ

)tG ≃−→
(
r!ζ

)tG
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Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume XG ≃ ∗.
By orientability, we may write
DZ

X e := HZ⊗ DX e ≃ constX eΣ−dHZ ∈ Fun(X e ,D(Z)) for d > 0.
Without loss of generality, d is even by passing to X × X if
necessary. Now consider

HZ (r>1
! ϵ∗DZ

Xe )tG Σ(r>1
! ϵ∗DZ

Xe )hG

(r!DZ
Xe )hG (r!DZ

Xe )tG Σ(Σ−d HZ)hG

c

can

≃ r>1
!

can

• By a totally general argument, this map is nullhomotopic,
• By a group homology calculation, this map is π0–surjective

onto a nonzero group if XG ≃ ∗. □
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Thank You!

22 / 22


	Background
	Nonequivariant theory review
	Equivariant theory
	Application: theorem of the single fixed point

