Equivariant Poincaré duality for finite groups and fixed points methods

joint work-in-progress with Dominik Kirstein & Christian Kremer

Kaif Hilman

Max Planck Institute for Mathematics Bonn, Germany

University of Haifa Topology & Geometry Seminar

9th April 2024

イロト イ団ト イヨト イヨト

1 Background

- 2 Nonequivariant theory review
- **3** Equivariant theory
- 4 Application: theorem of the single fixed point

1 Background

- 2 Nonequivariant theory review
- **3** Equivariant theory
- 4 Application: theorem of the single fixed point

Classical statement

Let X be an orientable compact space.

イロト イポト イヨト イヨト

Classical statement

Let X be an orientable compact space. Then there is an integer n and an isomorphism of graded groups

$$H_*(X;\mathbb{Z})\cong H^{n-*}(X;\mathbb{Z})$$

Background

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 000000

• **Computations:** can halve the amount of homological computations and make computational reasonings by symmetry

イロト イポト イヨト イヨト

Background

00000

- **Computations:** can halve the amount of homological computations and make computational reasonings by symmetry
- **Theoretical:** can build wrong-way/umkehr maps used to make transfer arguments

イロト イ団ト イヨト イヨト

Background

00000

- **Computations:** can halve the amount of homological computations and make computational reasonings by symmetry
- **Theoretical:** can build wrong-way/umkehr maps used to make transfer arguments
- Theoretical: starting point for surgery theory

Background	
00000	

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 000000

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point 000000

History

1890's **H. Poincaré** in terms of matching Betti numbers

<ロト < 部 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Background	
00000	

Nonequivariant theory reviev

Equivariant theory

Application: theorem of the single fixed point 000000

History

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

Background	Nonequivariant theory review	Equivariant theory	Application: theorem of the single fixed poir	
000●0		00000	000000	
History				

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall

introduced Poincaré complexes

Background	
00000	

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point $\overset{\circ\circ\circ\circ\circ\circ\circ}{\overset{\circ\circ\circ}\circ}$

History

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall

introduced Poincaré complexes

1992 S. Costenoble & S. Waner

introduced equivariant Poincaré duality for finite groups

History

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall

introduced Poincaré complexes

1992 S. Costenoble & S. Waner

introduced equivariant Poincaré duality for finite groups

2001 J. Klein

introduced the dualising spectrum perspective on Poincaré complexes

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 000000

History

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall

introduced Poincaré complexes

1992 S. Costenoble & S. Waner

introduced equivariant Poincaré duality for finite groups

2001 J. Klein

introduced the dualising spectrum perspective on Poincaré complexes

2000's **S. Costenoble & S. Waner, J.P. May & J. Sigurdsson** developed the theory of parametrised homotopy theory

▶ < ∃ >

History

1890's H. Poincaré

in terms of matching Betti numbers

1930's E.Čech, H. Whitney

in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall

introduced Poincaré complexes

1992 S. Costenoble & S. Waner

introduced equivariant Poincaré duality for finite groups

2001 J. Klein

introduced the dualising spectrum perspective on Poincaré complexes

- 2000's S. Costenoble & S. Waner, J.P. May & J. Sigurdsson developed the theory of parametrised homotopy theory
 - 2023 **B. Cnossen** (PhD thesis) studied a "pre-equivariant Poincaré duality" situation he called twisted ambidexterity

Background 0000●

Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point 000000

Goal of project

・ロト・西ト・田・・田・ ひゃぐ

イロト イポト イヨト イヨ

Goal of project

To develop a theory of equivariant Poincaré duality for finite groups to the extent of being able to relate and exploit the relationships between the different fixed points in nontrivial ways.

1 Background

- 2 Nonequivariant theory review
- **3** Equivariant theory
- Application: theorem of the single fixed point

Background	
00000	

Nonequivariant theory review

Equivariant theor

Application: theorem of the single fixed point 000000

Dictionary

Classical

Modern

Background	
00000	

Nonequivariant theory review

Equivariant theor

Application: theorem of the single fixed point 000000

Dictionary

Classical A ring *R*

Modern

<ロト < 部 > < 差 > < 差 > < 差 < の < 0</p>

00000	Nonequivariant theory review ○●○○	OOOOO	Application: theorem of the single fixed point
Dictionary	1		
	Classical A ring $R \longrightarrow$	A symmetric m	Modern onoidal stable category $\mathcal C$

Background 00000	Nonequivariant theory review	/	Equivariant theory	Application: theorem of the single fixed point 000000
Dictionary	/			
H _* (>	Classical A ring R $(; R), H^*(X; R)$	\rightsquigarrow	A symmetric m	Modern nonoidal stable category $\mathcal C$

ackground	Nonequivariant theory rev ○●○○	lew	Equivariant theory	Application: theorem of the single fixed point
Dictionary				
H _* (X	Classical A ring R ; R), H*(X; R)	$\sim \rightarrow \sim \rightarrow$	A symmetric m	Modern nonoidal stable category C Fun (X, C)

Background	Nonequivariant theory rev ○●○○	view	Equivariant theory 00000	Application: theorem of the single fixed point	
Diction	ary				
	Classical			Modern	
	A ring <i>R</i>	\rightsquigarrow	A symmetric i	monoidal stable category ${\mathcal C}$	
				\mathbf{T} ()(\mathbf{a})	

Write $r: X \to *$ for the unique map.

Nonequivariant theory review	Equivariant theory	Application: theorem of the single fixed point
/		
Classical		Modern
	Nonequivariant theory review	Nonequivariant theory review Equivariant theory

ClassicalWodernA ring R \rightsquigarrow A symmetric monoidal stable category C $H_*(X; R), H^*(X; R)$ \rightsquigarrow Fun(X, C)

Write $r: X \rightarrow *$ for the unique map. We thus get an adjunction

Background 00000	Nonequivariant theory review ○●○○	Equivariant theory	Application: theorem of the single fixed point
Dictionary	/		
	Classical		Modorn

ClassicalNodernA ring R \rightsquigarrow A symmetric monoidal stable category C $H_*(X; R), H^*(X; R)$ \rightsquigarrow Fun(X, C)

Write $r: X \rightarrow *$ for the unique map. We thus get an adjunction

For $\zeta \in \operatorname{Fun}(X, \mathcal{D}(\mathbb{Z}))$, we have

 $\pi_*(r_!\zeta) \cong H_*(X;\zeta) \quad \text{and} \quad \pi_{-*}(r_*\zeta) \cong H^*(X;\zeta)$

Background 00000 Nonequivariant theory review

Equivariant theory 00000

Application: theorem of the single fixed point 000000

Poincaré duality

・ロト・日本・日本・日本・日本・日本・日本

Equivariant theory

Poincaré duality

Definition: Let X be a compact space and C a stably symmetric monoidal category.

- ▲ ロ ト ▲ 団 ト ▲ 国 ト ク � (

10 / 22

Construction: Given a Spivak datum (D_X, c) , we may construct a natural transformation

$$c \cap -: r_*(-) \longrightarrow r_!(D_X \otimes -)$$

as follows:

1

Construction: Given a Spivak datum (D_X, c) , we may construct a natural transformation

$$c \cap -: r_*(-) \longrightarrow r_!(D_X \otimes -)$$

as follows:

 $\mathrm{Nat}\bigl(r^*r_*-,\mathrm{id}-\bigr)$

1

Construction: Given a Spivak datum (D_X, c) , we may construct a natural transformation

$$c \cap -: r_*(-) \longrightarrow r_!(D_X \otimes -)$$

as follows:

$$\operatorname{Nat}(r^*r_*-,\operatorname{id}-) \xrightarrow{r_!(D_X\otimes -)} \operatorname{Nat}(r_!(D_X\otimes r^*r_*-),r_!(D_X\otimes -))$$

Construction: Given a Spivak datum (D_X, c) , we may construct a natural transformation

$$c \cap -: r_*(-) \longrightarrow r_!(D_X \otimes -)$$

as follows:

$$\frac{\operatorname{Nat}(r^*r_*-,\operatorname{id}-)}{\simeq \operatorname{Nat}(r_!(D_X\otimes r^*r_*-),r_!(D_X\otimes -))}$$

Construction: Given a Spivak datum (D_X, c) , we may construct a natural transformation

$$c \cap -: r_*(-) \longrightarrow r_!(D_X \otimes -)$$

as follows:

$$\operatorname{Nat}(r^*r_*-,\operatorname{id}-) \xrightarrow{r_1(D_X\otimes -)} \operatorname{Nat}(r_1(D_X\otimes r^*r_*-),r_1(D_X\otimes -)) \\ \simeq \operatorname{Nat}(r_1D_X\otimes r_*(-),r_1(D_X\otimes -)) \\ \xrightarrow{c^*} \operatorname{Nat}(r_*(-),r_1(D_X\otimes -))$$

Equivariant theory

Application: theorem of the single fixed point 000000

Poincaré duality

・ロマ・西マ・西マ・西マ・白マ

Equivariant theory

Poincaré duality

Definition: A compact space X is said to be C-Poincaré duality if the two conditions hold:

メロトメ却トメミトメミト ヨーのへ(

1 the object $D_X \in \operatorname{Fun}(X, \mathcal{C})$ is invertible,

11 / 22

- 1 the object $D_X \in \operatorname{Fun}(X, \mathcal{C})$ is invertible,
- 2 the map $c \cap -: r_*(-) \to r_!(D_X \otimes -)$ is an equivalence.

イロト イポト イヨト イヨト

- 1 the object $D_X \in \operatorname{Fun}(X, \mathcal{C})$ is invertible,
- 2 the map $c \cap -: r_*(-) \to r_!(D_X \otimes -)$ is an equivalence.

Classical example: When C = Sp, it is just a property for a compact space to be Sp-Poincaré duality.

イロト イポト イヨト イヨト

- 1 the object $D_X \in \operatorname{Fun}(X, \mathcal{C})$ is invertible,
- 2 the map $c \cap -: r_*(-) \to r_!(D_X \otimes -)$ is an equivalence.

Classical example: When C = Sp, it is just a property for a compact space to be Sp–Poincaré duality. This turns out to agree with Wall's Poincaré complexes, using Spivak's spherical fibration as Klein's dualising spectrum.

Poincaré duality

Definition: A compact space X is said to be *C*-*Poincaré duality* if the two conditions hold:

- 1 the object $D_X \in \operatorname{Fun}(X, \mathcal{C})$ is invertible,
- 2 the map $c \cap -: r_*(-) \to r_!(D_X \otimes -)$ is an equivalence.

Classical example: When C = Sp, it is just a property for a compact space to be Sp-Poincaré duality. This turns out to agree with Wall's Poincaré complexes, using Spivak's spherical fibration as Klein's dualising spectrum.

Remark: In fact, more generally, when C is a presentably symmetric monoidal stable category, it is just a property for a compact space to be C-Poincaré duality.

イロト イポト イヨト イヨト

1 Background

2 Nonequivariant theory review

3 Equivariant theory

4 Application: theorem of the single fixed point

12 / 22

Background 00000

Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point 000000

Equivariant theory $0 \bullet 000$

Application: theorem of the single fixed point 000000

Definition: A *G*-category is an object in $Cat_{\mathcal{G}} := Fun(\mathcal{O}_{\mathcal{G}}^{op}, Cat)$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Equivariant theory

Application: theorem of the single fixed point 000000

G-categories

Definition: A *G*-category is an object in $Cat_{\mathcal{G}} := Fun(\mathcal{O}_{\mathcal{G}}^{op}, Cat)$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in $Cat_{\mathcal{G}}$.

Equivariant theory

Application: theorem of the single fixed point $_{\rm OOOOOO}$

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{G} := \operatorname{Fun}(\mathcal{O}_{G}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in Cat_{G} . An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Equivariant theory

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{G} := \operatorname{Fun}(\mathcal{O}_{G}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in Cat_{G} . An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Example: For the group $G = C_p$, a *G*-category looks like the data

Equivariant theory

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{G} := \operatorname{Fun}(\mathcal{O}_{G}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in Cat_{G} . An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Example: For the group $G = C_p$, a *G*-category looks like the data

$$C_p/C_p \longrightarrow C_p/e \bigcirc C_p \longrightarrow \mathcal{C}^{C_p} \longrightarrow \mathcal{C}^e \bigcirc C_p$$

Background 00000 Nonequivariant theory review

Equivariant theory

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{\mathcal{G}} := \operatorname{Fun}(\mathcal{O}_{\mathcal{G}}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in $\operatorname{Cat}_{\mathcal{G}}$. An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Example: For the group $G = C_p$, a *G*-category looks like the data

$$C_p/C_p \longrightarrow C_p/e \bigcirc C_p \longrightarrow C^{C_p} \longrightarrow C^{C_p} \subset C_p$$

Remark: Cat_G has internal hom object $\underline{\operatorname{Fun}}(\underline{\mathcal{C}},\underline{\mathcal{D}}) \in \operatorname{Cat}_{G}$.

Equivariant theory

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{G} := \operatorname{Fun}(\mathcal{O}_{G}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in Cat_{G} . An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Example: For the group $G = C_p$, a *G*-category looks like the data

$$C_p/C_p \longrightarrow C_p/e \bigcirc C_p \longrightarrow C^{C_p} \longrightarrow C^e \bigcirc C_p^e$$

Remark: Cat_G has internal hom object $\underline{\operatorname{Fun}}(\underline{\mathcal{C}},\underline{\mathcal{D}}) \in \operatorname{Cat}_G$. An object in $\underline{\operatorname{Fun}}(\underline{\mathcal{C}},\underline{\mathcal{D}})$ contains the data of $\{\varphi_H \colon \mathcal{C}_H \to \mathcal{D}_H\}_{H \leq G}$

Equivariant theory

イロト イポト イヨト イヨト

G-categories

Definition: A *G*-category is an object in $\operatorname{Cat}_{\mathcal{G}} := \operatorname{Fun}(\mathcal{O}_{\mathcal{G}}^{\operatorname{op}}, \operatorname{Cat})$. We use the underline notation $\underline{\mathcal{C}}$ to denote an object in $\operatorname{Cat}_{\mathcal{G}}$. An object in a *G*-category $\underline{\mathcal{C}}$ is a morphism $\underline{X} : \underline{*} \to \underline{\mathcal{C}}$.

Example: For the group $G = C_p$, a G-category looks like the data

$$C_p/C_p \longrightarrow C_p/e \bigcirc C_p \longrightarrow C^{C_p} \longrightarrow C^{C_p} \subset C_p$$

Remark: Cat_{G} has internal hom object $\underline{\operatorname{Fun}}(\underline{\mathcal{C}},\underline{\mathcal{D}}) \in \operatorname{Cat}_{G}$. An object in $\underline{\operatorname{Fun}}(\underline{\mathcal{C}},\underline{\mathcal{D}})$ contains the data of $\{\varphi_{H} \colon \mathcal{C}_{H} \to \mathcal{D}_{H}\}_{H \leq G}$ and commutation data

$$\begin{array}{ccc} \mathcal{C}^{H} & \stackrel{\varphi_{H}}{\longrightarrow} & \mathcal{D}^{H} \\ \operatorname{Res}_{K}^{H} & \equiv & \bigvee \operatorname{Res}_{K}^{H} \\ \mathcal{C}^{K} & \stackrel{\varphi_{K}}{\longrightarrow} & \mathcal{D}^{K} \end{array}$$

for every subgroup inclusion $K \leq H \leq G$.

Equivariant theory

Application: theorem of the single fixed point $\underset{OOOOOO}{\text{OOOOO}}$

イロト イ団ト イヨト イヨト

14 / 22

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = {Sp_H}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following:

G-categories

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\text{op}}$ be the fully faithful inclusion of the orbit G/G.

∃ ► < ∃ ►

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\mathrm{op}}$ be the fully faithful inclusion of the orbit G/G. This gives rise to a Bousfield localisation

$$\operatorname{Cat}_{\mathcal{G}} \xrightarrow{s^*} \operatorname{Cat}$$

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\mathrm{op}}$ be the fully faithful inclusion of the orbit G/G. This gives rise to a Bousfield localisation

$$\operatorname{Cat}_{\mathcal{G}} \xrightarrow{s^*} \operatorname{Cat}$$

Note that $s^*(-) = (-)^G$ evaluates the "genuine fixed point"

G-categories

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\mathrm{op}}$ be the fully faithful inclusion of the orbit G/G. This gives rise to a Bousfield localisation

$$\operatorname{Cat}_{\mathcal{G}} \xrightarrow{s^*} \operatorname{Cat}$$

Note that $s^*(-) = (-)^G$ evaluates the "genuine fixed point" and the *G*-category s_*C has value C at G/G and * elsewhere.

G-categories

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\mathrm{op}}$ be the fully faithful inclusion of the orbit G/G. This gives rise to a Bousfield localisation

$$\operatorname{Cat}_{\mathcal{G}} \xrightarrow{s^*} \operatorname{Cat}$$

Note that $s^*(-) = (-)^G$ evaluates the "genuine fixed point" and the *G*-category s_*C has value C at G/G and * elsewhere.

Definition: A *G*-space is an object in $\mathcal{S}_{\mathcal{G}} := \operatorname{Fun}(\mathcal{O}_{\mathcal{G}}^{\operatorname{op}}, \mathcal{S}).$

イロト イポト イヨト イヨト

G-categories

Example: Write \underline{Sp} for the *G*-category of genuine *G*-spectra, i.e. $\underline{Sp} = \{Sp_H\}_{H \leq G}$ where $Sp_H := Mack_H(Sp)$.

An important adjunction in the theory is the following: let $s: * \hookrightarrow \mathcal{O}_G^{\mathrm{op}}$ be the fully faithful inclusion of the orbit G/G. This gives rise to a Bousfield localisation

$$\operatorname{Cat}_{\mathcal{G}} \xrightarrow{s^*} \operatorname{Cat}_{s_*}$$

Note that $s^*(-) = (-)^G$ evaluates the "genuine fixed point" and the *G*-category s_*C has value C at G/G and * elsewhere.

Definition: A *G*-space is an object in $S_G := \operatorname{Fun}(\mathcal{O}_G^{\operatorname{op}}, S)$. For $\underline{X} \in S_G$, we write $X^e := \underline{X}(G/e) \in \operatorname{Fun}(BG, S)$ for the underlying space with *G*-action.

Equivariant theory

Application: theorem of the single fixed point 000000

G–Poincaré duality

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

イロト イポト イヨト イヨト

G–Poincaré duality

Definition: Let \underline{X} be a compact G-space and \underline{C} a G-stably symmetric monoidal category. A *Spivak datum* consists of a "dualising spectrum" object $D_{\underline{X}} \in \underline{\operatorname{Fun}}(\underline{X},\underline{C})$ and a "fundamental class" map $c : \mathbb{1}_{\underline{C}} \to r_! D_{\underline{X}}$ in \underline{C} .

Equivariant theory

イロト イポト イヨト イヨト

G–Poincaré duality

Definition: Let \underline{X} be a compact G-space and \underline{C} a G-stably symmetric monoidal category. A *Spivak datum* consists of a "dualising spectrum" object $D_{\underline{X}} \in \underline{\operatorname{Fun}}(\underline{X}, \underline{C})$ and a "fundamental class" map $c : \mathbb{1}_{\underline{C}} \to r_1 D_{\underline{X}}$ in \underline{C} .

Definition: A compact *G*-space \underline{X} is said to be \underline{C} -Poincaré duality if the two conditions hold:

- 1 the object $D_{\underline{X}} \in \underline{\operatorname{Fun}}(\underline{X},\underline{\mathcal{C}})$ is invertible,
- **2** the map $c \cap -: r_*(-) \to r_!(D_{\underline{X}} \otimes -)$ is an equivalence.

イロト イポト イヨト イヨト

G–Poincaré duality

Background

Definition: Let \underline{X} be a compact G-space and \underline{C} a G-stably symmetric monoidal category. A *Spivak datum* consists of a "dualising spectrum" object $D_{\underline{X}} \in \underline{\operatorname{Fun}}(\underline{X}, \underline{C})$ and a "fundamental class" map $c : \mathbb{1}_{\underline{C}} \to r_1 D_{\underline{X}}$ in \underline{C} .

Definition: A compact *G*-space \underline{X} is said to be \underline{C} -Poincaré duality if the two conditions hold:

- 1 the object $D_{\underline{X}} \in \underline{\operatorname{Fun}}(\underline{X}, \underline{C})$ is invertible,
- 2 the map $c \cap -: r_*(-) \to r_!(D_{\underline{X}} \otimes -)$ is an equivalence.

Examples: Smooth G-manifolds and tom Dieck's generalised homotopy representations are <u>Sp</u>-Poincaré duality.

Equivariant theory

Application: theorem of the single fixed point 000000

Main manoeuvres

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

16 / 22

Manoeuvre 2 (Poincaré isotropy): Let \underline{X} be a compact *G*-space and \mathcal{C} a presentably symmetric monoidal stable category. Then \underline{X} is $s_*\mathcal{C}$ -Poincaré duality if and only if X^G is \mathcal{C} -Poincaré duality.

Manoeuvre 2 (Poincaré isotropy): Let \underline{X} be a compact *G*-space and \mathcal{C} a presentably symmetric monoidal stable category. Then \underline{X} is $s_*\mathcal{C}$ -Poincaré duality if and only if X^G is \mathcal{C} -Poincaré duality.

Corollary: If \underline{X} is \underline{Sp}_{G} -Poincaré duality, then X^{G} is \underline{Sp} -Poincaré duality.

Manoeuvre 2 (Poincaré isotropy): Let \underline{X} be a compact *G*-space and \mathcal{C} a presentably symmetric monoidal stable category. Then \underline{X} is $s_*\mathcal{C}$ -Poincaré duality if and only if X^G is \mathcal{C} -Poincaré duality.

Corollary: If <u>X</u> is <u>Sp</u>_G-Poincaré duality, then X^G is Sp-Poincaré duality. This is obtained by upgrading the geometric fixed points functor $\Phi^G : \operatorname{Sp}_G \to \operatorname{Sp}$ to a *G*-exact symmetric monoidal functor $\Phi : \underline{\operatorname{Sp}} \to s_*\operatorname{Sp}$.

1 Background

- 2 Nonequivariant theory review
- **3** Equivariant theory
- **4** Application: theorem of the single fixed point

Background 00000 Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point $0 \bullet 0000$

A theorem of Atiyah–Bott and Conner–Floyd

・ロマ・山下・山川・山下・山口・
Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 00000

A theorem of Atiyah–Bott and Conner–Floyd

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$.

- イロト イヨト イヨト イヨー クヘ

A theorem of Atiyah–Bott and Conner–Floyd

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold.

(ロト (聞) (臣) (臣) 臣) のの

A theorem of Atiyah–Bott and Conner–Floyd

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold. Then the M^G cannot just be a point.

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold. Then the M^G cannot just be a point.

Remarks:

Background

• Originally conjectured by Conner-Floyd in 1964,

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold. Then the M^G cannot just be a point.

Remarks:

Background

- Originally conjectured by Conner-Floyd in 1964,
- Proved first by Atiyah–Bott using a Lefschetz fixed points theorem based on the Atiyah–Singer index theorem,

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold. Then the M^G cannot just be a point.

Remarks:

Background

- Originally conjectured by Conner-Floyd in 1964,
- Proved first by Atiyah–Bott using a Lefschetz fixed points theorem based on the Atiyah–Singer index theorem,
- Conner–Floyd subsequently gave another proof using bordism theory,

Theorem (Atiyah–Bott 1968, Conner–Floyd 1966): Let p be an odd prime and $G = C_{p^k}$. Let M a non–contractible, closed, connected, oriented smooth G–manifold. Then the M^G cannot just be a point.

Remarks:

- Originally conjectured by Conner-Floyd in 1964,
- Proved first by Atiyah–Bott using a Lefschetz fixed points theorem based on the Atiyah–Singer index theorem,
- Conner–Floyd subsequently gave another proof using bordism theory,
- Both proofs are highly geometric.

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 00000

A generalisation

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$.

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の <

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$. Let \underline{X} be a compact Sp-Poincaré duality space

イロト イポト イヨト イヨト

A generalisation

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$. Let \underline{X} be a compact Sp-Poincaré duality space satisfying a technical cellular dimension hypothesis (satisfied for example by smooth G-manifolds)

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$. Let \underline{X} be a compact Sp-Poincaré duality space satisfying a technical cellular dimension hypothesis (satisfied for example by smooth G-manifolds) such that the underlying space of \underline{X} is non-contractible, connected, and orientable.

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$. Let \underline{X} be a compact \underline{Sp} -Poincaré duality space satisfying a technical cellular dimension hypothesis (satisfied for example by smooth G-manifolds) such that the underlying space of \underline{X} is non-contractible, connected, and orientable. Then X^G is not contractible.

Theorem (HKK): Let p be an odd prime and $G = C_{p^k}$. Let \underline{X} be a compact \underline{Sp} -Poincaré duality space satisfying a technical cellular dimension hypothesis (satisfied for example by smooth G-manifolds) such that the underlying space of \underline{X} is non-contractible, connected, and orientable. Then X^G is not contractible.

Remark: proof is purely homotopy-theoretic using the theory of fundamental classes developed in the project.

Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point $000 \bullet 00$

< = > < = > < = > < = >

Quick review of the Tate construction

20 / 22

æ

Nonequivariant theory review

Equivariant theor

Application: theorem of the single fixed point $\texttt{OOO}{\bullet}\texttt{OO}$

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

<ロト < 部 > < 目 > < 目 > < 目 > の < 0</p>

Nonequivariant theory review

Equivariant theor

Application: theorem of the single fixed point 000000

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point 000000

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Construction: Let $\underline{X} \in \mathcal{S}_{\mathcal{G}}$.

Equivariant theory

Application: theorem of the single fixed point $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Construction: Let $\underline{X} \in S_G$. From this, there is a functorially constructed "singular part" *G*-space $\underline{X}^{>1}$ which admits a map to \underline{X} .

Equivariant theory

Application: theorem of the single fixed point $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Construction: Let $\underline{X} \in S_G$. From this, there is a functorially constructed "singular part" *G*-space $\underline{X}^{>1}$ which admits a map to \underline{X} . To set up notation, we write $\underline{X}^{>1} \xrightarrow{\epsilon} \underline{X} \xrightarrow{r} \underline{X} \xrightarrow{r} \underline{X}$.

Equivariant theory

Application: theorem of the single fixed point $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Construction: Let $\underline{X} \in S_G$. From this, there is a functorially constructed "singular part" *G*-space $\underline{X}^{>1}$ which admits a map to \underline{X} . To set up notation, we write $\underline{X}^{>1} \xrightarrow{\epsilon} \underline{X} \xrightarrow{r} \underbrace{x}{\longrightarrow} \underline{X}$.

By homology covariant functoriality, for all $\zeta \in \underline{\operatorname{Fun}}(\underline{X}, \underline{\operatorname{Sp}})$, we have a map $r_1^{>1} \epsilon^* \zeta \to r_1 \zeta$ in $\operatorname{Sp}_{\mathcal{G}}$.

Equivariant theory

Application: theorem of the single fixed point $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Quick review of the Tate construction

Recall that for $E \in \operatorname{Sp}_{G}$, we have a fibre sequence in Sp

$$E_{hG} \longrightarrow E^{hG} \longrightarrow E^{tG} (\longrightarrow \Sigma E_{hG})$$

Importantly, $(-)^{tG}$ kills objects of the form $\operatorname{Ind}_{e}^{G} F$.

Construction: Let $\underline{X} \in S_G$. From this, there is a functorially constructed "singular part" *G*-space $\underline{X}^{>1}$ which admits a map to \underline{X} . To set up notation, we write $\underline{X}^{>1} \xrightarrow{\epsilon} \underline{X} \xrightarrow{r} \underline{*}$.

By homology covariant functoriality, for all $\zeta \in \underline{\operatorname{Fun}}(\underline{X}, \underline{\operatorname{Sp}})$, we have a map $r_!^{>1} \epsilon^* \zeta \to r_! \zeta$ in Sp_G . One can show that this induces an equivalence

$$(r_!^{>1}\epsilon^*\zeta)^{tG} \xrightarrow{\simeq} (r_!\zeta)^{tG}$$

Nonequivariant theory review 0000 Equivariant theory

Application: theorem of the single fixed point $0000 \bullet 0$

Very rough sketch of new proof

きょう 御 ふ 山 きょう きょう きょう

Nonequivariant theory review

Equivariant theory

Application: theorem of the single fixed point $0000 \bullet 0$

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$.

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$. By orientability, we may write $D_{X^e}^{\mathbb{Z}} := \mathrm{H}\mathbb{Z} \otimes D_{X^e} \simeq \mathrm{const}_{X^e} \Sigma^{-d} \mathrm{H}\mathbb{Z} \in \mathrm{Fun}(X^e, \mathcal{D}(\mathbb{Z}))$ for d > 0. Background Nonequivariant theory review Equivariant theory Application

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$. By orientability, we may write $D_{X^e}^{\mathbb{Z}} := H\mathbb{Z} \otimes D_{X^e} \simeq \operatorname{const}_{X^e} \Sigma^{-d} H\mathbb{Z} \in \operatorname{Fun}(X^e, \mathcal{D}(\mathbb{Z}))$ for d > 0. Without loss of generality, d is even by passing to $\underline{X} \times \underline{X}$ if necessary.

∃ ► < ∃ ►

Background Nonequivariant theory review Equivariant theory 00000 0000

Application: theorem of the single fixed point $0000 \bullet 0$

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$. By orientability, we may write $D_{X^e}^{\mathbb{Z}} := H\mathbb{Z} \otimes D_{X^e} \simeq \operatorname{const}_{X^e} \Sigma^{-d} H\mathbb{Z} \in \operatorname{Fun}(X^e, \mathcal{D}(\mathbb{Z}))$ for d > 0. Without loss of generality, d is even by passing to $\underline{X} \times \underline{X}$ if necessary. Now consider

$$\begin{array}{c|c} \mathrm{H}\mathbb{Z} & (r_!^{>1}\epsilon^*D_{X^e}^{\mathbb{Z}})^{tG} \xrightarrow{\mathrm{can}} \Sigma(r_!^{>1}\epsilon^*D_{X^e}^{\mathbb{Z}})_{hG} \\ c \\ \downarrow & \downarrow^{\simeq} & \downarrow^{r_!^{>1}} \\ (r_!D_{X^e}^{\mathbb{Z}})^{hG} \xrightarrow{\mathrm{can}} (r_!D_{X^e}^{\mathbb{Z}})^{tG} & \Sigma(\Sigma^{-d}\mathrm{H}\mathbb{Z})_{hG} \end{array}$$

∃ ► < ∃ ►

Background Nonequivariant theory review Equivariant theory 00000 0000

Application: theorem of the single fixed point $0000 \bullet 0$

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$. By orientability, we may write $D_{X^e}^{\mathbb{Z}} := H\mathbb{Z} \otimes D_{X^e} \simeq \operatorname{const}_{X^e} \Sigma^{-d} H\mathbb{Z} \in \operatorname{Fun}(X^e, \mathcal{D}(\mathbb{Z}))$ for d > 0. Without loss of generality, d is even by passing to $\underline{X} \times \underline{X}$ if necessary. Now consider

$$\begin{array}{c|c} \mathrm{H}\mathbb{Z} & (r_{!}^{>1}\epsilon^{*}D_{X^{e}}^{\mathbb{Z}})^{tG} \xrightarrow{\mathrm{can}} \Sigma(r_{!}^{>1}\epsilon^{*}D_{X^{e}}^{\mathbb{Z}})_{hG} \\ c \\ \downarrow & \downarrow^{\simeq} & \downarrow^{r_{!}^{>1}} \\ r_{!}D_{X^{e}}^{\mathbb{Z}})^{hG} \xrightarrow{\mathrm{can}} (r_{!}D_{X^{e}}^{\mathbb{Z}})^{tG} & \Sigma(\Sigma^{-d}\mathrm{H}\mathbb{Z})_{hG} \end{array}$$

• By a totally general argument, this map is nullhomotopic,

Very rough sketch of new proof

Proof by contradiction, inducting on k. So can assume $X^G \simeq *$. By orientability, we may write $D_{X^e}^{\mathbb{Z}} := H\mathbb{Z} \otimes D_{X^e} \simeq \operatorname{const}_{X^e} \Sigma^{-d} H\mathbb{Z} \in \operatorname{Fun}(X^e, \mathcal{D}(\mathbb{Z}))$ for d > 0. Without loss of generality, d is even by passing to $\underline{X} \times \underline{X}$ if necessary. Now consider

$$\begin{array}{c|c} \mathrm{H}\mathbb{Z} & (r_{!}^{>1}\epsilon^{*}D_{X^{e}}^{\mathbb{Z}})^{tG} \xrightarrow{\operatorname{can}} \Sigma(r_{!}^{>1}\epsilon^{*}D_{X^{e}}^{\mathbb{Z}})_{hG} \\ c \\ \downarrow & \downarrow^{\simeq} & \downarrow^{r_{!}^{>1}} \\ r_{!}D_{X^{e}}^{\mathbb{Z}})^{hG} \xrightarrow{\operatorname{can}} (r_{!}D_{X^{e}}^{\mathbb{Z}})^{tG} & \Sigma(\Sigma^{-d}\mathrm{H}\mathbb{Z})_{hG} \end{array}$$

- By a totally general argument, this map is nullhomotopic,
- By a group homology calculation, this map is π₀-surjective onto a nonzero group if X^G ≃ *.

Thank You!

・ロト・日本・日本・日本・日本