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Classical statement

Let X be an orientable compact space. Then there is an integer n
and an isomorphism of graded groups

H.(X;Z) = H"(X; Z)
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Why care?

® Computations: can halve the amount of homological computations
and make computational reasonings by symmetry

® Theoretical: can build wrong-way/umkehr maps used to make
transfer arguments

® Theoretical: starting point for surgery theory



Background
[e]e]e] o]

History




Background
[e]e]e] o]

History

1890's H. Poincaré
in terms of matching Betti numbers



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes

1992 S. Costenoble & S. Waner
introduced equivariant Poincaré duality for finite groups



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes
1992 S. Costenoble & S. Waner
introduced equivariant Poincaré duality for finite groups
2001 J. Klein
introduced the dualising spectrum perspective on Poincaré
complexes



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes

1992 S. Costenoble & S. Waner
introduced equivariant Poincaré duality for finite groups

2001 J. Klein
introduced the dualising spectrum perspective on Poincaré
complexes

2000’s S. Costenoble & S. Waner, J.P. May & J. Sigurdsson

developed the theory of parametrised homotopy theory



Background
[e]e]e] o]

History

1890’s H. Poincaré
in terms of matching Betti numbers

1930's E.Cech, H. Whitney
in terms of (co)homological isomorphism via cap/cup products

1967 C.T.C. Wall
introduced Poincaré complexes

1992 S. Costenoble & S. Waner
introduced equivariant Poincaré duality for finite groups

2001 J. Klein
introduced the dualising spectrum perspective on Poincaré
complexes

2000's S. Costenoble & S. Waner, J.P. May & J. Sigurdsson

developed the theory of parametrised homotopy theory

2023 B. Cnossen (PhD thesis)
studied a “pre—equivariant Poincaré duality” situation he called
twisted ambidexterity



Background
0000e

Goal of project




Background
0000e

Goal of project

To develop a theory of equivariant Poincaré duality for finite
groups to the extent of being able to relate and exploit the
relationships between the different fixed points in nontrivial ways.
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Dictionary
Classical Modern
Aring R ~» A symmetric monoidal stable category C
H.(X;R),H*(X;R) ~~ Fun(X,C)

Write r: X — * for the unique map. We thus get an adjunction
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Fun(X,C) «— "~ C
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Dictionary
Classical Modern
Aring R ~» A symmetric monoidal stable category C
H.(X;R),H*(X;R) ~~ Fun(X,C)

Write r: X — * for the unique map. We thus get an adjunction

n

N

Fun(X,C) «— "~ C

For ¢ € Fun(X,D(Z)), we have

m(nC) = H(X;¢) and  m_.(r() = H*(X: ()
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Poincaré duality

Definition: Let X be a compact space and C a stably symmetric
monoidal category. A Spivak datum consists of a “dualising
spectrum” object Dx € Fun(X,C) and a “fundamental class”

C: ﬂc — r!DX in C.

Construction: Given a Spivak datum (Dx, ¢), we may construct a
natural transformation

cN—:r(=) — n(Dx®-)

as follows:

Nat(r*r*—,id — ) M)

Nat(r!(Dx ® rr,—),n(Dx ® —))
~ Nat(nDx @ r.(~), n(Dx ® -))
AN Nat(r*(—), n(Dx ® _))
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Poincaré duality

Definition: A compact space X is said to be C—Poincaré duality if
the two conditions hold:

@ the object Dx € Fun(X,C) is invertible,
@® the map cN —: r.(—) — n(Dx ® —) is an equivalence.

Classical example: When C = Sp, it is just a property for a
compact space to be Sp—Poincaré duality. This turns out to agree
with Wall's Poincaré complexes, using Spivak’s spherical fibration
as Klein's dualising spectrum.

Remark: In fact, more generally, when C is a presentably
symmetric monoidal stable category, it is just a property for a
compact space to be C—Poincaré duality.
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G—categories

Definition: A G—category is an object in Catg := Fun(Op, Cat).
We use the underline notation C to denote an object in Catg. An
object in a G—category C is a morphism X: x — C.

Example: For the group G = C,, a G—category looks like the data

o
Resc”

G/CG —— Gle _ DG — C =5 C° D6

Remark: Catg has internal hom object Fun(C, D) € Catg. An
object in Fun(C, D) contains the data of {¢y: Cy = DH}H<g and
commutation data

CH PH DH

Res%l = J/Res?

CK PK DK

for every subgroup inclusion K < H < G.
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G—categories

Example: Write Sp for the G—category of genuine G—spectra, i.e.
Sp = {Spy}H< where Spy := Macky(Sp).
An important adjunction in the theory is the following: let

s: % — OF be the fully faithful inclusion of the orbit G/G. This
gives rise to a Bousfield localisation

*

Catg S:, Cat
Sk

Note that s*(—) = (—)¢ evaluates the “genuine fixed point” and
the G—category s,C has value C at G/G and * elsewhere.

Definition: A G-space is an object in Sg := Fun(O2,S). For
X € 8¢, we write X¢ := X(G/e) € Fun(BG, S) for the underlying
space with G-action.
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G—Poincaré duality

Definition: Let X be a compact G—space and C a G—stably
symmetric monoidal category. A Spivak datum consists of a
“dualising spectrum” object Dx € Fun(X,C) and a “fundamental
class” map c: 1¢ —+ nDx in C.
Definition: A compact G—space X is said to be C—Poincaré
duality if the two conditions hold:

@ the object Dx € Fun(X, C) is invertible,

@® the map c N —: r,(—) — n(Dx ® —) is an equivalence.

Examples: Smooth G—manifolds and tom Dieck’s generalised
homotopy representations are Sp—Poincaré duality.
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duality and F: C — D a symmetric monoidal G—exact functor of
G—presentable stable categories. Then X is also D—Poincaré
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Manoeuvre 2 (Poincaré isotropy): Let X be a compact G—space
and C a presentably symmetric monoidal stable category. Then X
is s,C—Poincaré duality if and only if X¢ is C—Poincaré duality.
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Main manoeuvres

Manoeuvre 1 (Poincaré basechange): Let X be C—Poincaré
duality and F: C — D a symmetric monoidal G—exact functor of
G—presentable stable categories. Then X is also D—Poincaré
duality.

Manoeuvre 2 (Poincaré isotropy): Let X be a compact G—space
and C a presentably symmetric monoidal stable category. Then X
is s,C—Poincaré duality if and only if X¢ is C—Poincaré duality.

Corollary: If X is Spg—Poincaré duality, then X is Sp—Poincaré

duality. This is obtained by upgrading the geometric fixed points

functor ¢ : Sp; — Sp to a G—exact symmetric monoidal functor
®: Sp — s,.Sp.
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A theorem of Atiyah—Bott and Conner—Floyd

Theorem (Atiyah—Bott 1968, Conner—Floyd 1966): Let p be
an odd prime and G = Cpk. Let M a non—contractible, closed,
connected, oriented smooth G—manifold. Then the MS cannot just
be a point.

Remarks:
® Originally conjectured by Conner—Floyd in 1964,

® Proved first by Atiyah—Bott using a Lefschetz fixed points
theorem based on the Atiyah—Singer index theorem,

e Conner—Floyd subsequently gave another proof using bordism
theory,

® Both proofs are highly geometric.
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A generalisation

Theorem (HKK): Let p be an odd prime and G = C,. Let X be
a compact Sp—Poincaré duality space satisfying a technical cellular
dimension hypothesis (satisfied for example by smooth
G—-manifolds) such that the underlying space of X is
non—contractible, connected, and orientable. Then X© is not
contractible.

Remark: proof is purely homotopy—theoretic using the theory of
fundamental classes developed in the project.
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Quick review of the Tate construction

Recall that for E € Sp¢, we have a fibre sequence in Sp
EhG — EhG — EtG(—> ZEhG)

Importantly, (—)€ kills objects of the form IndSF.

Construction: Let X € Sg. From this, there is a functorially
constructed “singular part” G-space X! which admits a map to
X. To set up notation, we write x>1 € X r *.

1

By homology covariant functoriality, for all { € Fun(X, Sp), we
have a map r!>1e*C — n¢ in Spg. One can show that this induces
an equivalence

(71Q)" = (nQ)"
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Proof by contradiction, inducting on k. So can assume X© ~ x.
By orientability, we may write

D%. := HZ ® Dxe ~ constxeX 9HZ € Fun(X®, D(Z)) for d > 0.
Without loss of generality, d is even by passing to X x X if
necessary. Now consider

H7Z ( >1 *DZ )tG n Z( >1€*D)Z(e)h6
1 X i
(nD%e)'e —=2— (nD%.)t (X7 IHZ)he

® By a totally general argument, this map is nullhomotopic,

® By a group homology calculation, this map is mp—surjective
onto a nonzero group if X¢ ~ x. O



Applicati
[e]e]e]e]e] )

heorem of the single fixed point

Thank You!
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