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Recollections on mod 2 (co)homology

Each of H.(—) = H.(—;F2) and H*(—) = H*(—;F,) is a
homotopy functor from spaces to Z-graded vector spaces. The
reduced theories H,(—) and H*(—) gives functors from based
spaces to Z-graded vector spaces which extend to spectra. A
stable cohomology operation 6 of degree k is a sequence of natural
transformations

0,: H'(—) = H" (=) (nez)

compatible with suspension isomorphisms, i.e., the following
diagram commutes for all n and k.
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The set of all such operations AX = HK(H) is an F,-vector space,
and these form the mod 2 Steenrod algebra A = A* = H*(H), a
non-commutative graded algebra with composition as product.
The structure of A was determined by Serre, then Milnor showed
that it was a cocommutative Hopf algebra and determined its dual
Hopf algebra A, where A, = Homy,(A",F>). As an algebra, A is
generated by the Steenrod operations Sq" € A" (n > 1) satisfying
the Adem relations (here Sq° = 1):

—1— .
For0<r<2s, Sq"Sq°= Z (5 .J) Sq ISy .
: r—2j
0<j<[r/2]
There is a basis of admissible monomials
Sq(lh wie) — Sq” Sq’2 Sqi‘

where i,_1 > 2i, for 2 < r < £ and iy > 1. Here £ is the length of
the monomial and the |dent|ty operation Sq° = 1 is the only
element of length zero.
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In fact the Sq> are the only algebra indecomposables, so A is
generated as an algebra by these.

The cocommutative coproduct : A — A ® A and the antipode
x: A — A are given by the formulae

p(sa) = 3 Sa’ @S, 3 x(Sa’)Sq" " =o.

0<r<n 0<r<n

The antipode is anti-commutative, i.e.,

x(ef) = x(B)x()-
Here are the first few x(Sq?):

x(Sq') = Sq*, x(Sq?) = Sq?, x(Sq*) = Sq* +Sq* Sq* Sq' .
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Theorem (Serre & Milnor)

The commutative Hopf algebra A, is polynomial:
A, :F2[§r rz 1] :FQ[Q rz 1]7

where &, € Axr—1 and (, = x(&,). The coproduct and antipode
satisfy

Y= > &0 Y=Y o,

0j<n 0j<n
— E : 2k
Cn - gkCn—k'
1<k<n
. .. S S
The non-zero primitives are the elements £ = (¥,

The Poincaré series for A and A, is H(l — tzrfl)fl-

r>1
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Modules over A

Modules will be cohomologically graded and assumed to be left
modules. The dual of a module M = M* is DM = DM* where

DM" = Homp,(M™", )
and its left action is given by
(0F)(=) = F(x0(=))-
Of course for a finite type spectrum X,
Ha(X) = Home,(H"(X), F2) = (DH(X)) ".
If X is a finite CW spectrum with Spanier-Whitehead dual DX,

H*(DX) = DH*(X).
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Finite sub-Hopf algebras of A

Important fact: A =J,,.A(n), where A(n) C A is the finite

sub-Hopf algebra of dimension (") generated by
Sq',Sq2,Sq*,...,Sq?" with dual quotient Hopf algebra

Aln)e = AJ(E GG Gan o)
- A*//F2[C2n+17 2n7 3 17 . Cg—l—l’ Cn+27 o ]
Here A(n) and A(n). have Poincaré series
H (1— t2"+2*f(2'71))

_ 42r—1
1<r<n+1 (1 t )

The highest degree element in A(n), is the residue class of

n+1 n n—1
z=¢" GG
and dual to this is a generator of the top degree of A(n). The dual

pairing makes z, a Frobenius form so A(n) is a Poincaré duality
algebra and thus self-injective.
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The Wall relations

The Adem relations are neither minimal nor do they restrict to
the A(n) subalgebras: for example, the identities

Sq?Sq® = Sq* Sqt + Sq® = Sq* Sq* + Sq! Sq*

are not meaningful in A(1) since Sq* ¢ A(1). Wall’s relations
amongst the generators Sq2 are minimal and restrict to give
minimal relations for the A(n) subalgebras.
ForO<s<r—2and1<t,let

O(r,s) = 54> Sq* +5q> Sq”,

o(t) = Sq% Sa> +5a2 Sq2 Sq¥ T +5¢27 Sq2 7 Sq?".

Then ©(r,s) € A(r — 1) and ®(r) € A(r — 1) so these can be
expressed as polynomial expressions in the quk for0<kgr—1.
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The elements

Sq% Sq% +Sq% Sq? + O(r, s),

Sq? Sq% +50% 7 2 Sq® T +5627 Sq® Sq* + @(t)
give a minimal set of relations for A. In particular, such elements

with r,t < n form a minimal set of relations for A(n).
In the first few cases the Wall relations are

A0): Sq'Sq' =0,

A1) : Sq'Sql =5q°Sq? +Sq' Sq?Sqt =0

A(2): Sq'Sq' =Sq?Sq? +Sq' Sq? Sqt
= Sq* Sq* + Sq? Sq* Sq? + Sq? Sq? Sq*
=5q'Sq* +Sq* Sq' +S¢° Sq' Sq” = 0

Using these it is possible to produce explicit bases for the A(n)s.
Here are the top dimensional elements in A(n) when n=0,1,2:

Sq', Sq* Sq?Sq' Sa?, Sq* Sq? Sq* Sq? Sq* Sq? Sq* Sq* Sq? Sq* .



Generalisations of the Steenrod algebra

Modern categories of spectra are symmetric monoidal with respect
to smash products before passage to homotopy. The category of
S-modules . is the earliest example and provides a good model
for the category of spectra. In this category a commutative monoid
is equivalent to an £ ring spectrum and is called a commutative
S-algebra. Examples include S, HZ, HF,, kO, kU, MU.

Every commutative S-algebra R has an associated category of
modules .#Zr which is also closed symmetric monoidal with respect
to a relative smash product Ag and function object Fr(—, —); it
also has a model structure and homotopy category Zg in which to
do homotopy theory.

If R is connective and mgR = Z or mgR = Zp) there is a morphism
of commutative S-algebras R =+ H = HIF, so H is a commutative
R-algebra, and then there are relative homology and cohomology
theories

HR(=) = m(H AR =), Hi(=) = 1_u(Fr(— H)).



The relative Steenrod algebra Hj(H) is the algebra of stable
operations in Hg(—). f R =S and p =2, Hi(H) = H*(H) = A.
Other examples: Hy(H) = A(1) and H{ ((H) = A(2).

Realisation question: When working with spectra (or equivalently
S-modules) we can ask whether an \A-module M is realisable

as H*(X) for some S-module X. Similarly, for an A(1)-module we
can ask if it is H;5(Y) for a kO-module Y and for an
A(2)-module we can ask if it is H} ((Z) for a tmf-module Z.
Example: When can we realise an A-module of the following form

with 0 # 6 € A?
6{
0

Algebraic observation: Module only exists if 8 is indecomposable,
i.e., n=2°and # = Sq* +decomposables.
Hopf invariant 1 Theorem (Adams): Only realisable if s =0, 1,2, 3.
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Realisability of .4(1)-modules

We will work with left modules M = M* involving multiplication
maps A(1)" @ M" — M"*". Here some pictures of A(1) which is a
free cyclic module realisable as Hj,(H).

"

.\ \
e —0

| |
| |
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Here are some more realisable 4(1)-modules. In each case we can
form a finite CW spectrum W then take kKO A W to get

Hi (kO A W) = H*(W) with its A-action restricted to an action
of the subalgebra A(1) C A.

SqZC
@

Fa = H*(S%) A(1)/A(1){Sa",Sa" Sq”} = H*(C,)

S 1
q Sq?

Sq?
Sqt

A(1)/A(1){Sa",Sq* Sa" Sq”} A(1)/ A1) {Sq*}
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The Joker The whiskered Joker

A(1)/A(1){Sq" S} A(1)/A(1){Sq? Sq" Sq*}

The construction of the Joker example uses the Toda bracket
(2,7,2) = {n?} C m(S°). Later we'll see other examples of Toda
brackets playing a rdle.

There are two different A-module extensions of the Joker module.
These differ in the action of Sq*; the corresponding A-modules are
dual to each other. Their realisations are Spanier-Whitehead dual
to each other but not weakly equivalent.

Andrew Baker, University of Glasgow



What about this one?

A(1)/A1){Sq"}

Let’s first think about whether the above diagram can be realised
as an A-module. Notice that the top class is Sq° Sq' Sq?. Using
Adem relations we have

S92 Sqt Sq? = Sq° Sq® = Sq® +Sq* Sqt = Sq' Sq* + Sq* Sqt

which is not possible. Despite this, there is a kO-module realising
this module, namely HZ for which H},(HZ) = A(1)/A(1){Sq'}.
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Another approach using a Toda bracket

The existence of a CW spectrum W = S% U e? U €3 U e® whose
cohomology is A/ A{Sq'} is equivalent to 0 being an element of
the Toda bracket (n,2,1) = {+2v} C 73(S°). But 0 ¢ {+2v}.
We can also interpret the Toda bracket as defined in w3(kO). Here
the image of v is 0, so we can build a CW kO-module of this form;
the result is equivalent to HZ as a kO-module.

Here a kO cell is attached using a kO-module map

5,'(’61 = kO A S"1 — X by forming its mapping cone X U D,’(’él.

There are many other examples of realisable cyclic A(1)-modules!
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Realisability of .4(2)-modules with tmf-modules

Here are some pictures of A(2) (remember that dim A(2) = 64).




All of the examples for kO of the form kO A W can be replaced by

tmf A W so that H; (tmf A W) = H*(W) as A(2)-modules. The

Sq* argument works to show there is no A(2)-module

Sqt

Sq?

and the Toda bracket argument also applies since the image of v
in m3(tmf) has order 8.
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Many interesting A(2)-modules can be obtained using doubling
which exploits the fact that there is a degree halving surjective
homomorphism of Hopf algebras A(2) — A(1) under which

Sq s {Sq”/2 if nis éven,
0 otherwise.

By restricting and doubling degrees, every A(1)-module M induces
an A(2)-module M.
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Doubling the Joker

Joker M Joker

Sq*
Sq? Sq?
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The following examples are of the form H*(W). Their
constructions depending on nv € 74(S%) = 0. The two CW
spectra are stably Spanier-Whitehead dual.

Sq2
Sq4

A(2)/A(2){Sq',5a% Sa"} A(2)/A(2){Sa", Sq" S, Sq*}

It is also possible to realise the double of the (whiskered) Joker

using the Toda bracket (n,v,n) = {v?} C m6(S°). The double of
A(1) is also realisable as a spectrum so we can smash it with tmf

to realise this .A(2)-module.
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What about this one?

Sq?

A(2)/ A(2){Sq*, S’}

We can't rule this out with Steenrod operations. What about a
Toda bracket argument? Constructing a suitable CW complex
requires the Toda bracket (v, n,v) C 73(S°) to contain 0. But

{v,m,v) = {7} = {no +¢} 2 0.

Here the image of o in m7(tmf) is 0 but the image of ¢ is not.
This means that there is no tmf-module with this cohomology! If
it did exist its homotopy would be 7, (kO)[v2].
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Some tmf-modules related to kKO

The cohomology of the tmf-module kO is shown below.

17

Hy 1 (kO) =2 A(2)/A(2){Sq",Sa”}
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We can realise kO as a CW tmf-module with cells corresponding
to the basis shown. Each skeleton is a tmf-module whose
cohomology is the cyclic \A(2)-module beneath it.

kOl kol kOl
10
7
6 6 6
4 4 4
0 0 0

A(2)/ A(2){Sa",Sa%,Sa* Sa® Sa*}  A(2)/ A(2){Sa’, Sq?, Sa® Sq* Sa? Sq*}
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There are many other A(2)-modules including many cyclic ones.
Here is an interesting example that is realisable as the cohomology

of a tmf-module.

A(2)/A(2){Sq', A, B}

A=5q"Sq> +Sq* Sq' S Sq',
B = Sq*Sq% Sq* + Sq' Sq% Sq' Sq% Sq* + Sq* Sq% Sq' Sq% Sq' .

It doesn’t come from an .A-module since Adem relations imply

Sq? Sq' Sq? Sq* xo = (Sq® Sq* + Sq* Sq®)xo.
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Stable self duality

Many of the examples of modules we have seen are (stably)
self-dual: A left module M over a graded Hopf algebra is stably
self-dual if for some k, DM =2 M[k].

Every finite dimensional Hopf algebra is a Frobenius algebra or in
the graded case a Poincaré duality algebra, hence stably self-dual.
For example, as A(1)-modules DA(1) = A(1)[—6], and as
A(2)-modules DA(2) = A(1)[—23].

Algebraic question: When is a cyclic module A(n)/L (where L is
a left ideal) stably self-dual?

Partial answer: Any A(n)-module of form A(n) ® F, for a
subHopf algebra K C A(n). This is related to the idea of a
Frobenius extension of Hopf algebras. If K is also a normal
subalgebra then A(n)//K = A(n) ®k F» is a quotient Hopf algebra
so this result is then immediate. If K is only a subalgebra then
A(n) @k F» need not be stably self-dual.
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There is a version of Spanier-Whitehead duality for finite CW
R-modules and Hi(DrX) = D(HE(X)) as left Hiy(H)-modules. In
particular, for a dualisable S-module W, Dr(R A W) ~ RA DsW.
A CW R-module Z is stably self-dual if DrZ ~ ¥9Z for some d.
There are many examples: If M is a compact closed n-manifold
whose tangent or normal bundle is R-orientable then
Dr(RA(M1)) ~ RAX"(M4). So any Spin manifold satisfies
Dio(kO A (M4)) ~ kO AX™"(My) and any String manifold
satisfies Dyye(tmf A (My)) ~ tmf A X "(M,).

A particular case of this occurs when M = G is a compact
connected Lie group and then D(G1) ~ X~ "(Gy). Here the
suspension spectrum X>°G, is an S-algebra and its homology
H.(G) is a Poincaré duality algebra over A.
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Here is a generalisation of this in the setting of 2-complete
modules over connective examples such as R = kO and R = tmf.
Suppose that E is an R ring spectrum for which P, = HRE is a
local Poincaré duality algebra over F. The Spanier-Whitehead
dual of E satisfies

HRDRE = HLE = HRE[d]

as HpH-modules.

Proposition
There is a morphism of R-modules E — ¥¢R which induces a
non-trivial homomorphism

HRE — HRR[—d] = Fy[—d].

The multiplication map E A\g E — E composed with this map
define a duality pairing E AR E — Y9R. Therefore E is a
Spanier-Whitehead stably self-dual R-module with DRE ~ £~ 9E.
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To see some exotic examples of this when R = tmf, we can take
E = kO, kU, tmf;(3), HZ, HF,. For example, as an A(2)-module,

H;: ¢(tmf;(3)) is the double of A(1).

Joker modules: tmf A (Joker) and tmf A D(Joker) have different
cohomology \A(2)-modules.

Homogeneous spaces G/H provide a good source of examples:
e.g., SU(5)/SO(5) is Spin, but SU(6)/SO(6) is not.



Thanks for listening, keep safe and well!
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