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Recollections on mod 2 (co)homology

Each of H�(�) = H�(�;F2) and H�(�) = H�(�;F2) is a
homotopy functor from spaces to Z-graded vector spaces. The
reduced theories eH�(�) and eH�(�) gives functors from based
spaces to Z-graded vector spaces which extend to spectra. A
stable cohomology operation � of degree k is a sequence of natural
transformations

�n : H
n(�)! Hn+k(�) (n 2 Z)

compatible with suspension isomorphisms, i.e., the following
diagram commutes for all n and k .

eHn(�)
�n //

�=
��

eHn+k(�)

�=
��eHn+1(�(�))

�n+1 // eHn+k+1(�(�))
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The set of all such operations Ak = Hk(H) is an F2-vector space,
and these form the mod 2 Steenrod algebra A = A� = H�(H), a
non-commutative graded algebra with composition as product.
The structure of A was determined by Serre, then Milnor showed
that it was a cocommutative Hopf algebra and determined its dual
Hopf algebra A� where An = HomF2(A

n;F2). As an algebra, A is
generated by the Steenrod operations Sqn 2 An (n > 1) satisfying
the Adem relations (here Sq0 = 1):

For 0 < r < 2s, Sqr Sqs =
X

06j6br=2c

�
s � 1� j

r � 2j

�
Sqr+s�j Sqj :

There is a basis of admissible monomials

Sq(i1;:::;i`) = Sqi1 Sqi2 � � � Sqi`

where ir�1 > 2ir for 2 6 r 6 ` and i` > 1. Here ` is the length of
the monomial and the identity operation Sq0 = 1 is the only
element of length zero.
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In fact the Sq2
s
are the only algebra indecomposables, so A is

generated as an algebra by these.
The cocommutative coproduct  : A ! A
A and the antipode
� : A ! A are given by the formulae

 (Sqn) =
X

06r6n

Sqr 
Sqn�r ;
X

06r6n

�(Sqr ) Sqn�r = 0:

The antipode is anti-commutative, i.e.,

�(��) = �(�)�(�):

Here are the �rst few �(Sq2
s
):

�(Sq1) = Sq1; �(Sq2) = Sq2; �(Sq4) = Sq4+Sq1 Sq4 Sq1 :
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Theorem (Serre & Milnor)

The commutative Hopf algebra A� is polynomial:

A� = F2[�r : r > 1] = F2[�r : r > 1];

where �r ; �r 2 A2r�1 and �r = �(�r ). The coproduct and antipode

satisfy

 (�n) =
X
06j6n

�2
j

n�j 
 �j ;  (�n) =
X
06j6n

�j 
 �2
j

n�j ;

�n =
X

16k6n

�k�
2k

n�k :

The non-zero primitives are the elements �2
s

1 = �2
s

1 .

The Poincar�e series for A and A� is
Y
r>1

(1� t2
r�1)�1.
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Modules over A

Modules will be cohomologically graded and assumed to be left
modules. The dual of a module M = M� is DM = DM� where

DMn = HomF2(M
�n;F2)

and its left action is given by

(�f )(�) = f (��(�)):

Of course for a �nite type spectrum X ,

Hn(X ) = HomF2(H
n(X );F2) = (DH�(X ))�n:

If X is a �nite CW spectrum with Spanier-Whitehead dual DX ,

H�(DX ) �= DH�(X ):
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Finite sub-Hopf algebras of A

Important fact: A =
S

n>0A(n), where A(n) � A is the �nite

sub-Hopf algebra of dimension 2(
n+2
2 ) generated by

Sq1;Sq2; Sq4; : : : ;Sq2
n
with dual quotient Hopf algebra

A(n)� = A�=(�
2n+1

1 ; �2
n

2 ; �
2n�1

3 ; : : : �2n+1; �n+2; : : :)

= A�==F2[�
2n+1

1 ; �2
n

2 ; �
2n�1

3 ; : : : �2n+1; �n+2; : : :]:

Here A(n) and A(n)� have Poincar�e seriesY
16r6n+1

(1� t2
n+2�r (2r�1))

(1� t2r�1)
:

The highest degree element in A(n)� is the residue class of

zn = �2
n+1�1

1 �2
n�1

2 �2
n�1�1

3 � � � �n+1

and dual to this is a generator of the top degree of A(n). The dual
pairing makes zn a Frobenius form so A(n) is a Poincar�e duality

algebra and thus self-injective.
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The Wall relations

The Adem relations are neither minimal nor do they restrict to
the A(n) subalgebras: for example, the identities

Sq2 Sq3 = Sq4 Sq1+Sq5 = Sq4 Sq1+Sq1 Sq4

are not meaningful in A(1) since Sq4 =2 A(1). Wall's relations
amongst the generators Sq2

s
are minimal and restrict to give

minimal relations for the A(n) subalgebras.
For 0 6 s 6 r � 2 and 1 6 t, let

�(r ; s) = Sq2
r
Sq2

s
+Sq2

s
Sq2

r
;

�(t) = Sq2
t
Sq2

t
+Sq2

t�1
Sq2

t
Sq2

t�1
+Sq2

t�1
Sq2

t�1
Sq2

t
:

Then �(r ; s) 2 A(r � 1) and �(r) 2 A(r � 1) so these can be

expressed as polynomial expressions in the Sq2
k
for 0 6 k 6 r � 1.
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The elements

Sq2
r
Sq2

s
+Sq2

s
Sq2

r
+ �(r ; s);

Sq2
t
Sq2

t
+Sq2

t�1
Sq2

t
Sq2

t�1
+Sq2

t�1
Sq2

t�1
Sq2

t
+ �(t)

give a minimal set of relations for A. In particular, such elements
with r ; t 6 n form a minimal set of relations for A(n).
In the �rst few cases the Wall relations are

A(0) : Sq1 Sq1 = 0;

A(1) : Sq1 Sq1 = Sq2 Sq2+Sq1 Sq2 Sq1 = 0

A(2) : Sq1 Sq1 = Sq2 Sq2+Sq1 Sq2 Sq1

= Sq4 Sq4+Sq2 Sq4 Sq2+Sq2 Sq2 Sq4

= Sq1 Sq4+Sq4 Sq1+Sq2 Sq1 Sq2 = 0:

Using these it is possible to produce explicit bases for the A(n)s.
Here are the top dimensional elements in A(n) when n = 0; 1; 2:

Sq1; Sq1 Sq2 Sq1 Sq2; Sq1 Sq2 Sq1 Sq2 Sq4 Sq2 Sq1 Sq4 Sq2 Sq4 :
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Generalisations of the Steenrod algebra

Modern categories of spectra are symmetric monoidal with respect
to smash products before passage to homotopy. The category of
S-modules MS is the earliest example and provides a good model
for the category of spectra. In this category a commutative monoid
is equivalent to an E1 ring spectrum and is called a commutative

S-algebra. Examples include S , HZ, HFp, kO, kU, MU.
Every commutative S-algebra R has an associated category of
modules MR which is also closed symmetric monoidal with respect
to a relative smash product ^R and function object FR(�;�); it
also has a model structure and homotopy category DR in which to
do homotopy theory.
If R is connective and �0R = Z or �0R = Z(p) there is a morphism
of commutative S-algebras R ! H = HFp so H is a commutative
R-algebra, and then there are relative homology and cohomology
theories

HR
� (�) = ��(H ^R �); H�

R(�) = ���(FR(�;H)):
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The relative Steenrod algebra H�
R(H) is the algebra of stable

operations in H�
R(�). If R = S and p = 2, H�

S(H) = H�(H) = A.
Other examples: H�

kO(H) = A(1) and H�
tmf

(H) = A(2).

Realisation question: When working with spectra (or equivalently
S-modules) we can ask whether an A-module M is realisable
as H�(X ) for some S-module X . Similarly, for an A(1)-module we
can ask if it is H�

kO(Y ) for a kO-module Y and for an
A(2)-module we can ask if it is H�

tmf
(Z ) for a tmf-module Z .

Example: When can we realise an A-module of the following form
with 0 6= � 2 A?

�

n

0

Algebraic observation: Module only exists if � is indecomposable,
i.e., n = 2s and � = Sq2

s
+decomposables.

Hopf invariant 1 Theorem (Adams): Only realisable if s = 0; 1; 2; 3.
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Realisability of A(1)-modules

We will work with left modules M = M� involving multiplication
maps A(1)r 
Mn ! Mn+r . Here some pictures of A(1) which is a
free cyclic module realisable as H�

kO(H).

�

�
Sq1
OO

�

Sq2

]]

�

@@

�

OO

�

OO

@@

�

@@

�

AA

OO

�

�

�

� �

�

�

�
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Here are some more realisable A(1)-modules. In each case we can
form a �nite CW spectrum W then take kO ^W to get
H�
kO(kO ^W ) �= H�(W ) with its A-action restricted to an action

of the subalgebra A(1) � A.

F2 = H�(S0)

0

Sq2

A(1)=A(1)fSq1; Sq1 Sq2g = H�(C�)

Sq2

Sq1

A(1)=A(1)fSq1; Sq2 Sq1 Sq2g

Sq2

Sq1

A(1)=A(1)fSq2g
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Sq4

The Joker

A(1)=A(1)fSq1 Sq2g

The whiskered Joker

A(1)=A(1)fSq2 Sq1 Sq2g

The construction of the Joker example uses the Toda bracket
h2; �; 2i = f�2g � �2(S

0). Later we'll see other examples of Toda
brackets playing a rôle.
There are two di�erent A-module extensions of the Joker module.
These di�er in the action of Sq4; the corresponding A-modules are
dual to each other. Their realisations are Spanier-Whitehead dual
to each other but not weakly equivalent.
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What about this one?

A(1)=A(1)fSq1g

0

2

3

5

Let's �rst think about whether the above diagram can be realised
as an A-module. Notice that the top class is Sq2 Sq1 Sq2. Using
Adem relations we have

Sq2 Sq1 Sq2 = Sq2 Sq3 = Sq5+Sq4 Sq1 = Sq1 Sq4+Sq4 Sq1

which is not possible. Despite this, there is a kO-module realising
this module, namely HZ for which H�

kO(HZ)
�= A(1)=A(1)fSq1g.
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Another approach using a Toda bracket

The existence of a CW spectrum W = S0 [ e2 [ e3 [ e5 whose
cohomology is A=AfSq1g is equivalent to 0 being an element of
the Toda bracket h�; 2; �i = f�2�g � �3(S

0). But 0 =2 f�2�g.
We can also interpret the Toda bracket as de�ned in �3(kO). Here
the image of � is 0, so we can build a CW kO-module of this form;
the result is equivalent to HZ as a kO-module.
Here a kO cell is attached using a kO-module map
Sn�1
kO = kO ^ Sn�1 ! X by forming its mapping cone X [ Dn�1

kO .

There are many other examples of realisable cyclic A(1)-modules!
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Realisability of A(2)-modules with tmf-modules

Here are some pictures of A(2) (remember that dimA(2) = 64).

Andre Henriques, december 2004.

The subalgebra A(2) of the Steenrod algebra

1

Sq1

Sq2

Sq3 Sq4

Sq5

Sq6

Sq7

with generators Sq1, Sq2, Sq4 and relations given by

+ + + ++= 0, = 0, = 0, = 0.
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All of the examples for kO of the form kO^W can be replaced by
tmf ^W so that H�

tmf
(tmf ^W ) �= H�(W ) as A(2)-modules. The

Sq4 argument works to show there is no A(2)-module

Sq2

Sq1

and the Toda bracket argument also applies since the image of �
in �3(tmf) has order 8.
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Many interesting A(2)-modules can be obtained using doubling

which exploits the fact that there is a degree halving surjective
homomorphism of Hopf algebras A(2)� A(1) under which

Sqn 7!

(
Sqn=2 if n is even,

0 otherwise.

By restricting and doubling degrees, every A(1)-module M induces
an A(2)-module (1)M.
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Doubling the Joker

Sq1
Sq2

Joker

Sq2

Sq4

(1)
Joker
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The following examples are of the form H�(W ). Their
constructions depending on �� 2 �4(S

0) = 0. The two CW
spectra are stably Spanier-Whitehead dual.

Sq2

Sq4

A(2)=A(2)fSq1;Sq2;Sq7g A(2)=A(2)fSq1;Sq1 Sq2; Sq4g

It is also possible to realise the double of the (whiskered) Joker
using the Toda bracket h�; �; �i = f�2g � �6(S

0). The double of
A(1) is also realisable as a spectrum so we can smash it with tmf

to realise this A(2)-module.
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What about this one?

Sq2

Sq4

A(2)=A(2)fSq1; Sq2g

We can't rule this out with Steenrod operations. What about a
Toda bracket argument? Constructing a suitable CW complex
requires the Toda bracket h�; �; �i � �8(S

0) to contain 0. But

h�; �; �i = f�g = f�� + "g 63 0:

Here the image of � in �7(tmf) is 0 but the image of " is not.
This means that there is no tmf-module with this cohomology! If
it did exist its homotopy would be ��(kO)[v2].
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Some tmf-modules related to kO

The cohomology of the tmf-module kO is shown below.

Sq4

Sq1

Sq2

H�
tmf

(kO) �= A(2)=A(2)fSq1;Sq2g

17

13

11

10

7

6

4

0
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We can realise kO as a CW tmf-module with cells corresponding
to the basis shown. Each skeleton is a tmf-module whose
cohomology is the cyclic A(2)-module beneath it.

kO[6]

6

4

0

kO[7]

A(2)=A(2)fSq1; Sq2; Sq4 Sq2 Sq4g

7

6

4

0

kO[10]

A(2)=A(2)fSq1; Sq2; Sq1 Sq4 Sq2 Sq4g

10

7

6

4

0

Andrew Baker, University of Glasgow



There are many other A(2)-modules including many cyclic ones.
Here is an interesting example that is realisable as the cohomology
of a tmf-module.

A(2)=A(2)fSq1;A;Bg

A = Sq4 Sq2+Sq2 Sq1 Sq2 Sq1;

B = Sq4 Sq2 Sq4+Sq1 Sq2 Sq1 Sq2 Sq4+Sq4 Sq2 Sq1 Sq2 Sq1 :

9

7

6

5

4

3

2

x0

It doesn't come from an A-module since Adem relations imply

Sq2 Sq1 Sq2 Sq4 x0 = (Sq8 Sq1+Sq1 Sq8)x0:
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Stable self duality

Many of the examples of modules we have seen are (stably)
self-dual: A left module M over a graded Hopf algebra is stably
self-dual if for some k , DM �= M[k].
Every �nite dimensional Hopf algebra is a Frobenius algebra or in
the graded case a Poincar�e duality algebra, hence stably self-dual.
For example, as A(1)-modules DA(1) �= A(1)[�6], and as
A(2)-modules DA(2) �= A(1)[�23].

Algebraic question: When is a cyclic module A(n)=L (where L is
a left ideal) stably self-dual?
Partial answer: Any A(n)-module of form A(n)
K F2 for a
subHopf algebra K � A(n). This is related to the idea of a
Frobenius extension of Hopf algebras. If K is also a normal
subalgebra then A(n)==K = A(n)
K F2 is a quotient Hopf algebra
so this result is then immediate. If K is only a subalgebra then
A(n)
K F2 need not be stably self-dual.
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There is a version of Spanier-Whitehead duality for �nite CW
R-modules and H�

R(DRX ) �= D(H�
R(X )) as left H�

R(H)-modules. In
particular, for a dualisable S-module W , DR(R ^W ) � R ^DSW .
A CW R-module Z is stably self-dual if DRZ � �dZ for some d .
There are many examples: If M is a compact closed n-manifold
whose tangent or normal bundle is R-orientable then
DR(R ^ (M+)) � R ^ ��n(M+). So any Spin manifold satis�es
DkO(kO ^ (M+)) � kO ^ ��n(M+) and any String manifold
satis�es Dtmf(tmf ^ (M+)) � tmf ^ ��n(M+).
A particular case of this occurs when M = G is a compact
connected Lie group and then D(G+) � ��n(G+). Here the
suspension spectrum �1G+ is an S-algebra and its homology
H�(G ) is a Poincar�e duality algebra over A.
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Here is a generalisation of this in the setting of 2-complete
modules over connective examples such as R = kO and R = tmf.
Suppose that E is an R ring spectrum for which P� = HR

� E is a
local Poincar�e duality algebra over F2. The Spanier-Whitehead
dual of E satis�es

HR
� DRE �= H�

RE
�= HR

� E [d ]

as H�
RH-modules.

Proposition

There is a morphism of R-modules E ! �dR which induces a

non-trivial homomorphism

HR
� E ! HR

� R[�d ] = F2[�d ]:

The multiplication map E ^R E ! E composed with this map

de�ne a duality pairing E ^R E ! �dR. Therefore E is a

Spanier-Whitehead stably self-dual R-module with DRE � ��dE .
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To see some exotic examples of this when R = tmf, we can take
E = kO; kU; tmf1(3);HZ;HF2. For example, as an A(2)-module,
H�
tmf

(tmf1(3)) is the double of A(1).

Sq2
Sq4

(1)A(1) = A(2)
E(2) F2

12

0

Joker modules: tmf ^ (Joker) and tmf ^ D(Joker) have di�erent
cohomology A(2)-modules.
Homogeneous spaces G=H provide a good source of examples:
e.g., SU(5)=SO(5) is Spin, but SU(6)=SO(6) is not.
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Thanks for listening, keep safe and well!
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