Configuration spaces of surfaces

Najib Idrissi Université de Paris

j/w Ricardo Campos & Thomas Willwacher

Topology and Geometry Seminar @ University of Haifa May 9th, 2021

Configuration spaces

- ♦ Let *M* be a manifold.
- ♦ Classical objects in algebraic topology.
- ♦ First appearance: Hurwitz, 1891.

Braid groups

♦ First classical appearance: braid groups

$$B_r := \langle s_1, \dots, s_{r-1} \mid s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}; \mid i-j| \ge 2 \Rightarrow s_i s_j = s_j s_i \rangle.$$

 \Leftrightarrow Element of B_r = path in $Conf_{D^2}(r)$:

- \Leftrightarrow B_r is $\pi_1(\operatorname{Conf}_{D^2}(r) / \mathfrak{S}_r)$, and $PB_r = \ker(B_r \to \mathfrak{S}_r)$ is $\pi_1(\operatorname{Conf}_{D^2}(r))$.
- ♦ Eilenberg-MacLane spaces \Rightarrow anything about $(P)B_r$ can be computed from $Conf_{D^2}(r)$.

Goodwillie-Weiss manifold calculus

- \diamond Want to compute $\operatorname{Emb}(M, N) = \{ f : M \hookrightarrow N \mid f \text{ is an embedding } \}.$
- \Leftrightarrow Emb(M, N) is a subspace of Map $_{\mathfrak{S}}(\mathsf{Conf}_M, \mathsf{Conf}_N) = \prod_{r=0}^{+\infty} \mathsf{Map}_{\mathfrak{S}_r}(\mathsf{Conf}_M(r), \mathsf{Conf}_N(r)).$
- \diamond GW calculus "approximates" Emb(M, N) by a more easily computable subspace:
- \diamond Collections of maps $(f_r)_{r\geq 0}\in \mathrm{Map}_{\mathfrak{S}}(\mathrm{Conf}_M,\mathrm{Conf}_N)$ such that:
 - ♦ Forgetting in the source maps to forgetting in the target up to homotopy;
 - ♦ Proximity in the source maps to proximity in the target *up to homotopy*.
- \diamond Restrict to Map_{\lesssim} (Conf^{fr}_M, Conf^{m-fr}) to have a correct homotopy type.
- ♦ If dim N dim $M \ge 3$ ⇒ recover the homotopy type of Emb(M, N).

Operadic structure

- ♦ We want to clarify what "compatible up to homotopy" means
- \Leftrightarrow \Rightarrow we need operads!
- \Leftrightarrow Let $D_M^{\mathrm{fr}}(r) \coloneqq \mathrm{Emb}(\coprod_{i=1}^r \mathbb{D}^m, M)$ and $D_n^{\mathrm{fr}}(r) \coloneqq \mathrm{Emb}(\coprod_{i=1}^r \mathbb{D}^m, \mathbb{D}^m)$
- $\Rightarrow D_m^{fr} := \{D_m^{fr}(r)\}_{r>0}$ is the (framed) **little disks operad**:

 \Rightarrow $D_M^{fr} := \{D_M^{fr}(r)\}_{r \ge 0}$ is a **right module** over D_m^{fr} via $D_M^{fr}(r) \times D_m^{fr}(s) \to D_M^{fr}(r+s-1)$

Operads & GW calculus

- \diamond Any embedding $f: M \hookrightarrow N$ induces a **morphism** $D_M^{fr} \to D_N^{fr}$, not just a map between configuration spaces!
- ♦ **Theorem** [Arone, Boavida, Goodwillie, Sinha, Turchin, Weiss ...]. If dim $N \dim M \ge 3$, then

$$\operatorname{Emb}(M, N) \simeq \operatorname{\mathbb{R}Map}_{\operatorname{D}_{m}^{\operatorname{fr}}}(\operatorname{D}_{M}^{\operatorname{fr}}, \operatorname{D}_{N}^{m-\operatorname{fr}}).$$

- ♦ Upshot: if we know the homotopy type of the **collection** of configuration spaces **as right modules**, then we can compute embedding spaces.
- \Leftrightarrow Computing the homotopy type of $\operatorname{Conf}_M(r)$ is difficult. For example, $M \simeq M' \Rightarrow \operatorname{Conf}_M(r) \simeq \operatorname{Conf}_{M'}(r)$.

Approach: cut the surface

$$\Rightarrow$$
 Take $\Sigma_g = (S^1 \times S^1) \# ... \# (S^1 \times S^1);$

$$\diamond$$
 Cut! $\Sigma_g = (S^2 \setminus (D^2)^{\sqcup 2g}) \cup (S^1 \times \mathbb{R})^{\sqcup g}$.

- \diamond Each part is $D^2 \setminus \mathbf{k}$ for some k.
- ♦ We have a fiber bundle: $\operatorname{Conf}_{M \setminus *}^{\operatorname{fr}}(r) \to \operatorname{Conf}_{M}^{\operatorname{fr}}(r+1) \to \operatorname{Fr}_{M}$ → computation by **induction.**
- \diamond We just need to know $Conf_{D^2 \setminus \mathbf{k}}^{fr}(r)$.

Hochschild complex

 \diamond The collection $D_{N\times\mathbb{R}}^{fr} = \{D_{N\times\mathbb{R}}^{fr}(r)\}_{r>0}$ is a monoid up to homotopy:

- \diamond If $\partial M = N$, then D_M^{fr} is a left module over $D_{N \times \mathbb{R}}^{fr}$.
- We have:

$$D_{M \cup_{N \times \mathbb{R}} M'}^{\mathrm{fr}} \simeq D_{M}^{\mathrm{fr}} \otimes_{D_{N \times \mathbb{R}}}^{\mathbb{L}} D_{M'}^{\mathrm{fr}}.$$

 \diamond Upshot: $D_{\Sigma_q}^{fr}$ is an "iterated Hochschild complex" of the $(D_{S^1 \times \mathbb{R}}^{fr})^{\otimes g}$ -bimodule $D_{S^2 \setminus 2g}^{fr}$.

Rational homotopy theory

- ♦ The whole homotopy type is too complex.
- ♦ We focus on **characteristic zero**.
- ♦ **Definition**: $f: X \to Y$ is a **rational equivalence** if $\pi_*(f) \otimes_{\mathbb{Z}} \mathbb{Q} : \pi_*(X) \otimes_{\mathbb{Z}} \mathbb{Q} \to \pi_*(Y) \otimes_{\mathbb{Z}} \mathbb{Q}$ is an isomorphism.
- ♦ **Theorem** [Sullivan]: There is an equivalence $\Omega^* \dashv \langle \rangle$ between:
 - ♦ Simply connected finite-type spaces, up to rational equivalence;
 - ♦ Simply connected finite-type commutative differential-graded algebras, up to quasi-isomorphism.
- \diamond Upshot: we want to find a **model** of $\Omega^*(D_M^{fr})$ with its action of $\Omega^*(D_m^{fr})$.

Formality

- ♦ **Theorem** [Kontsevich, Tamarkin, Lambrechts–Volić,] The operad D_2 is **formal**, i.e., $H^*(D_2; \mathbb{Q}) \simeq \Omega^*(D_2)$.
- \Leftrightarrow \Rightarrow we know everything about $D_2^{\mathbb{Q}}$ from [Arnold, Cohen]:

$$H^*(\mathbf{D}_2(r); \mathbb{Q}) = \frac{S(\omega_{ij})_{1 \le i \ne j \le r}}{(\omega_{ij}^2 = \omega_{ji} - \omega_{ij} = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0)}, \quad \deg \omega_{ij} = 1.$$

Many important consequences, e.g., deformation quantization, Deligne conjecture...

Formality: two approaches

- ♦ Kontsevich's approach:
 - Replace the 3T relation by "internal vertices";
 - \diamond Prove combinatorically that we have a resolution of $H^*(D_n)$;
 - \diamond Use integrals to connect with $\Omega^*(D_n)$.
- ♦ Generalized by Giansiracusa–Salvatore to prove formality of D₂^{fr}.

- ♦ Tamarkin's approach:
 - \Leftrightarrow Find a simpler groupoid PaB $\simeq \pi D_2$;
 - \Leftrightarrow Find a (Koszul) resolution of $H^*(D_2)$, the Drinfeld–Kohno Lie algebra;
 - Connect the two with a Drinfeld associator.
- \diamond Generalized by Ševera to prove formality of D_2^{fr} .
- ♦ Theorem [CIW] Cyclic formality of D₂^{fr}.
 Proof inspired by Ševera's.

The result

Theorem [CIW]. We have a small, explicit model $G_{\Sigma_g}^{fr}$ of $D_{\Sigma_g}^{fr}$, in arity r:

- \Leftrightarrow Generators: ω_{ij} for $1 \le i \ne j \le r$; $\alpha_{1,i}, \ldots, \alpha_{g,i}, \beta_{1,i}, \ldots, \beta_{g,i}$ for $1 \le i \le r$; θ_i for $1 \le i \le r$.
- ♦ Relations:
 - \diamond Same as before: $\omega_{ij}^2 = \omega_{ji} \omega_{ij} = \omega_{ij}\omega_{jk} + \omega_{jk}\omega_{ki} + \omega_{ki}\omega_{ij} = 0$;
 - $\Leftrightarrow \alpha_{k,i}\beta_{k,i} = \alpha_{l,i}\beta_{l,i}$ (volume form of Σ_g) and 0 otherwise;
 - \Leftrightarrow Symmetry: $\alpha_{k,i}\omega_{ij} = \alpha_{k,j}\omega_{ij}, \beta_{k,i}\omega_{ij} = \beta_{k,j}\omega_{ij}, \theta_i\omega_{ij} = \theta_j\omega_{ij}.$
- \Rightarrow Differential: $d\omega_{ij} = \Delta_{ij}$ and $d\theta_i = (2-2g) \cdot \text{vol}_i$.
- $\Rightarrow \text{ Proof: } G_{\Sigma_g}^{\text{fr}} \xleftarrow{\text{Combin.}} \text{Graphs}_{\Sigma_g}^{\text{fr}} \xrightarrow{\text{K}} \text{IterHoch}\left(H^*\left(D_{S^2 \setminus 2g}^{\text{fr}}\right); H^*\left(D_{S^1 \times \mathbb{R}}^{\text{fr}}\right)\right) \xleftarrow{\text{T}} \Omega^*\left(D_{\Sigma_g}^{\text{fr}}\right).$

Thank you for your attention!

These slides, the paper: https://idrissi.eu